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ABSTRACT

A mathematical model is developed using analytical techniques to
determine the longitudinal and vertical distributions of velocities and

salinities, averaged over a tidal period, for mixed but partially stratified
estuaries. The flow field is assumed laterally homogeneous and the estuary
width and depth are assumed to be functions of the longitudinal coordinate
only. Required inputs to the model include the salt intrusion length, the
ocean boundary salinity, the distribution of the depth-averaged salinity
and the freshwater discharge.

The governing equations included in the model are the vertical and

longitudinal equations of motion, continuity, salt conservatio~ and an
equation of state. The key assumption is that the longitudinal salinity
gradient is independent of depth. This decouples these equations and thus
permits an analytical solution to be found.

Using data from laboratory flume tests from the U.S. Army Waterways
Experiment Station and the Delf't Hydraulics Laboratory, and field surveys
from the James River Estuary, the model solutions are used to find corre-
lations for the mean vertical transfer coefficients of mass and momentum

with gross characteristics of the estuary. These correlations, plus the
results from a one-dimensional numerical model, permit this analytical
model to be used as a predictor of the velocity and salinity profiles in
estuaries and to relate changes in freshwater discharge to possible changes
in the location of shoaling zones.
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t. Introduction

I 1 Fstuarles as Natural Resources

Coastal zones and est~aries, in particular, provide major resources

for both the economic and social well-being of modern man. ln recogni-

tion of these valuable resources, increased efforts are being made to in-

sure and protect them from needless deterioration and neglect. To aid in

these efforts a more complete understanding of the complex inter-

r clat.ionships between the biological, chemical and physical mechanisms

of estuaries needs to be developed.

Estuaries are being used as sinks for industrial and municipal

wastes. When properly balanced with assimilative capacities, this may

be a practical use of these water bodies. However, careful attention

must be given to the types and amounts of effluents discharged, in order

to avoid conflicts with their great potential for biological productivity

and recreation by man.

Zn order to achieve this balance of uses, a thorough understanding

of the complex circulation patters of salt and freshwater in the estuaries

is needed.

1.2 Estuarine Circulation � A General Descri tion

An estuary is defined as a body of water connecting a source of

freshwater with a tidal sea or bay and extends over the length of tidal

action. Natural estuaries, with their irregular boundaries, have highly

complex patterns of circulation of the salt and freshwater masses con-

tained within them. The compounded influences of the factors involved,

i.e., the complex geometry, the tidal flows, the mixing induced b them

13



and hy the densitv differences makes estuarin» behavior a very difficult

subject for analytical descripti.on.

Figure 1.3. is a representation of a typical estuary as might be

found on the eastern seaboard of the United States. This estuary receives

freshwater flows from several rivers and streams and terminates in a bay

or the ocean. Pezhaps the most striking feature is the irregular

boundaries. There are turns and embayments as well as a nonuniform ex-

pansion from the narrow section at its inland end to the wide section at

the sea boundary. Hence, local eddying and flow reversals must be ex-

pected throughout the flow field, and in general, the velocity will have

time-varying components in the longitudinal, lateral and vertical

directions. However, the predominant direction for the velocity is along

the longitudinal axis, periodically changing direction with the tide.

Certain sections of the estuary can have strong lateral components during

portions of a tidal period.

The influence of tides makes the flow in estuaries unsteady in tRne,

both within a tidal period, and during longer lunar phases. The season-

al variation in the rates of freshwater inflow will also contribute an

additional long-term dynamic unsteadiness to estuarine flows .

One of the most important factors influencing the complex cir-

culation is the density difference between the river discharge at the

head, and the ocean salinity at the mouth. Density currents resulting

from these differences are often major components of the total circula-

tion, and must be included in a realistic model of the flow field.

14
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For some estuaries, the effects of surface winds or Coriolis

accelerations may be a significant influence on the circulation. HoM+'vet

in general, these factors are of secondary importance when compared ~+th

the effects of complex geometry, tidal mixing and density differencea

and will not be considered further in the present development.

1.3 Estuar hfodeiin Techniques

The purpose of building models of estuaries is to represent the

complex circulation of the prototype in a simplified form which can bn-

tested and studied to determine the possible consequences of modifica-

tions of controlling factors on the natural circulation. Examples o<

such changes could include the dredging of a navigation channel., the

diversion of freshwater inflow to other basins, or the placement of a

diffuser for the heated condenser water of an electric power station-

The former might seriously alter the salinity distribution while the

latter could obviously influence normal biol.ogical cycles. Recourse

to various types of models must be made to provide estimates of the

impact of such changes.

There are two main methods for modeling estuaries ', physical and

mathematical models. Only a very brief review of these techniques

needed here since Tracor �971! has recently presented a complete

survey of this field.

l,,3.1

A Physical hydraulic model provides direct visual observation of

flow. They can also be carefully instrumented for detailed measuremennta

of the velocity field, water surface elevations and dissolved or

16



suspended substances. Physical models of estuaries are distorted due

to large prototype dimensions. Vertical scales are frequently 1:100

while horizontal scales may be l.:1000. This results in a 1:10 dis-

tortion of all cross-sections. General usage has shown that in spite

of this distortion, these models can be made to reproduce many details

of the circulat.ion as well as of the distribution of salinity.

At the present time, physical models of estuaries are the most

important technique for determining the effects of changes in the proto-

type. Their great expense and slow building and operating times are

drawbacks which sophisticated mathematical models mav avoid. However,

one can expect these physical model.s to continue to be important tools

for estuarine analysis for a long time to come.

1.3.2 Mathematical liodels

The movement of water and the distribution of dissolved substances

in estuaries are governed by physical laws for which there are known

mathematical descriptions. In many cases, where various simplifying

assumptions can be made, these mathematical descriptions can be written

as equations for which there are known solutions. Depending upon the

solution technique, these models are referred to as either numerical or

analytical models. A numerical solution imp] ies replacing the governing

differential equations with approximate forms which can be solved by

computer. An analytical solution is an exact solution of the original

equation, by integration, with no subsequent approximations.

The application of analytical models to problems of estuarine cir-

culation is limited by the mathematical complexity of the governing

17



equations. n orI der to reduce these equations
an

solved analytically, various assumpt>ons may

render the final solutions very Izmited in appl

ral analytical estuary mode] s which

g ral, these analytical models describe

or mor tidal cycles. Thus, they serve a limit d

g s w'thin a tidal period are of interest. T} is

p o the problems being considered. Analvtical od

Y rict'ed to o or two space dimensions, e

lateral lateral and longztudznal or depth and Iongxtudxnal dzrections
Finally, these analytical models are restricted to problems for which
simple boundary conditions can be prescribed.

Until the advent of the modern high speed computer, analytical
models were the only mathematical technique for describing estuarine
circulation. Numerous models o f tidal flushing, salinity distributio~
and tidal motions, had been developed. Many of these models continue
to have application today in conjunction with the more powerful
numerical methods. These mode].s have also played an important role»
clarifying the physical understanding of the important processes and i"
derivin'v'ng the proper eouations to be incl.uded in the newer models.

The greater part of the recent literature on estuarine mode»ng
pertained to numerical mathematical models

These models use advanced
computer techni ehniques to find solutions to the governing equations o
tion and of ma s

mass conservation. One-, two- and three-dimensional models

18
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An important feature of these models is their ability to handle the un-

steady case, i.e., within a tidal period. Thus, the averaging over a

tidal period which was required for most analytical models is not re-

quired for numerical models.

At the present' time, the numerical models avail. able for engineering

applications are of either the unsteady one- or two-dimensional type.

A one-dimensional model averages al.l dependent variables over the cross-

sectional area, and thus yields changes in mean values with time and along

the longitudinal axis. These models can be used to predict water surface

elevation, mean currents, and mean salinities. They can also be used

with certain reservations to determine the cross-sectional mean concen-

tration of a non-conservative water quality parameter, such as dissolved

oxygen or biochemical. oxygen demand

Two-dimensional numerical models usually allow variations along the

lateral as well as along the longitudinal axis. In this case, the only

averaging is with depth. Again, these models can predict currents, water

quality parameters, etc. These models are more complex than the one-

dimensional case with regard to the computational techniques required.
1.4 ~Ob ectiv

The techniques for estuarine modeling described in the preceeding

sections suggest a possible combined approach. Physical models can be

used with mathematical models to analyse different scales of cir-

culation problems. Also, analytical models can be used with numerical

mode s to increase the number of spatial dimensions of the solution.d ]

19



investigation develops a two-dimensional analytical model of

estuarine c irculat ion including ver t i ca] and longidud inal distributions

o f velocity and salinity . Al 1 equat ions are averaged over one or more

t dal periods. This model can be coupled with a one-dimensional numericalti a

odel which i s not time-averaged, but i s ave raged over a cross-section

ability to calculate vertical variations o f the important flow

parameters is often a useful tool for solving estuarine problesN.

yertical salinity stratification is a key elemen,t in the circulation

pattern oo f an estuary. Models which can predict the ef f ects of changing

geometry, freshwater i.nflows, etc., on this stratification are of great

value. The modeling of vertical velocity prof iles is another useful

model capability. beany problems of shoaling in estuaries can only be

proper y s uroperly studied with a knowledge of the vertical distribution of

velocity.

Zf a model similar to the one described above is to have practical

application as a predictive tool, all parameters included in the solution

technique must be determinable in advance. Thus, an important part of

the objectives of this study is to obtain relationships between the
various time-averaged coefficients of turbul.ent dif fusion and eddy

viscosity included in the model and the gross parameters of estuarine

circulation.

1.5 S no sis of the Stud

The analytical model described in the previous section can be used
the longitudinal and vertical distributions of velocity and

salinity for partially stratified or well mixe1 mixed estuaries. All model

20



results are for conditions averaged over a tidal period. Certain coef f i-

cients of mixing included in th» mathematical equations of the model

have been correlated with various parameters for the estuary in question

from field and laboratory experiments. proper application of this model

requires a coupling with a one-dimensional unsteady numerical model,

The model has been developed and tested with data from laboratory

flumes and field surveys. Results indicate the model has practical

application in. the prediction of salinity stratification and shoaling

changes as might result from the engineering modifications of the

factors which control estuarine circulation.

21



II. Previous Investi ations

2.1 Anal sis of Recorded Data

The last twenty-five years have been a period of active interest in

the description and theoretical analysis of the circulation and mixing

characteristics of estuaries- A large body of literature has evolved

covering results from field surveys, laboratorv experiments and theoretical

analysis. These publications are as diverse as the estuaries they dis-

cuss, and this chapter will not attempt to review them all. A very ex-

cellent survey of this work is presented by Bowden �966!. The present

review is restricted to those articles which discuss the vertical dis-

tributions of velocity and salinity for partially stratified estuaries.

Pritchard �952! describes the circulation in the Chesapeake Bay

estuarine system, and in particular, in the James River estuary. Data

from an extensive program of field surveys are discussed, in which

salinities, temperatures and velocities were measured at several depths

and stations and averaged over one or more tidal periods. The resulting

net circulation and salinity distributions are typical for partially

stratified conditions. A basic feature of this net circulation is

a reversal in the vertical distribution of the time-averaged horizontal

velocity. In the surface region, extending to about middepth, t' he net

flow is towards the ocean, while the bottom region has flow in the

opposite direction, towards the river end of the estuary. The depth

integral of this velocity is equal to the net discharge of freshwater.

Although two regions can be identified for the velocity, the vertical

salinity distribution can not be separated into two distinct zones. In

22



u= U+U +
t

2.l

2.2
s= S+S +s'

where U is a mean velocity for one or more tidal periods U is a one-

dimensional tidal velocity  assumed perodic! and u' is a random

fluctuation due to turbulence. A similar set of definitions is made

for the salinity.

The salt conservation equation averaged over a tidal period is

written

23

partially stratified estuaries, there is a continuous increase in

salinity from the surface to the bottom, without a noticable point of

discontinuity.

Pritchard �952, 1954! also identifies several interesting features

of the longitudinal salinity gradient. For all depths, there is an

increase in salinity from the freshwater region to the boundary salinity

at the ocean end. In addition, over most of the estuary this longitud-

inal salinity gradient is nearly independent of depth, i.e., vertical

position. This latter feature does not hold very near the ocean

boundary or where the salinity goes to zero, upstream.

Pritchard �954! discusses the various terms in the equation of

salt conservation and uses the James River data to back-calculate the

relative order of these terms. In this analysis, the velocity and

salinity are written as the sum of three terms



as as as B BS B as� +U � +V � ~ �  K � !+ �  K � !
Bt Bx By ax x Bx ay y By

2.3

where U and V are the mean components of velocity in the horizontal and

vertical directions, x and y, respectively. K and K are identified
x y

as
as mean coefficients of eddy diffusivity where K � represents the

x ax

cross � product of the turbulent terms u's' averaged over a tidal period.

Similarly, K � replaces v s . The bar over the products representsBs

the time-average over the tidal period. All other cross-products are

assumed uncorrelated, and hence zero. The above equation assumes homo-

geneous conditions in the lateral direction.

asFor the period of study, Pritchard found the � t term to be small,

indicating that the freshwater inflows to the James River estuary were

as
nearly steady. The horizontal advection U � was found to be much

Bx

as
larger than the horizontal eddy diffusion �  K � ! and also larger than

Bx x Bx

BS
the vertical advection V � except near middepth. With these considera-

By

tions, a simplified mass balance can be written

as as a BS
U � + V � = �  K � !.

ax By By y By
2-4

24

Pritchard  l956! then developed the equations of motion for a simple

partially stratified estuary using the same James River data as cited

before. Surface shear due to wind is neglected. The longitudinal con-

servation of momentum equation, averaged over a tidal period, is



3U 2 i 2 i3U 3Ll r. 13~ 3 u'u' 3 v'u' 3 w u
U - -+V � + U3x 3y t 3x 5 3x 3x 3v 3Z

7e5

where p is the hvdrostatic pressure,P the density, w' the turbulent

f l actuation of the lateral velocity component  z axis! . By analogy with

the conservation of salt equation, Pritchard argues that only the ver-
v utical. eddy diffusion of momentun --- � needs to le retained. The time-
3y

averaged field acceleration terms for the James River data are also small

Finally, the. acceleration resulting from the tidal component of the
3U

velocity U � is an order smaller than the terms on the right-hand-
t 3x

side of the equation. Using similar arguments, the lateral momentum

equati.on is written

0= � � + fU
1 3 w u

ff 3z 3y
2,6

2.2 Ana~ltical ffode~lin of Circulation

The net circulation averaged over a tidal period described by

Pritchard �952, 1954, 1956! has been used by several investigators

as a basis for the development of analytical models, These models have

several applications, an important one being the analysis of shoaling

zones in estuaries. Simmons �955! and others have identified a
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where f is the Coriolis parameter. Using appropriate boundary conditions,

equations 2.5 and 2.6 are solved for the distributions of the turbulent

mementum flux terms, averaged over a tidal period. The results indicate

that the mean fluxes are zero at the surface and near the bottom, with

a somewhat parabolic distribution having a maximum near middepth.



relationship between locations where the. net horizontal velocity at

the bottom of a channel reverses direction and zones of high rates of

shoaling. Thus, analytical models which can predict the location of

this reversal, called a "null point", have practical engineering

applications.

Abbott �960! examines the role of the longitudinal salinit'y

gradient in determining the direction of the net, near bottom drift

velocity. Using the assumptions of Pritchard�956!, the longitudinal

momentum equation, averaged over a tidal period, is written

1 0
dh h � y

-~=g � +g   !�0 ap
p By dx p Bx 2.7

where T is the mean shear and h is the mean water level. Assumingxy 0

zero surface stress, this equation is integrated over the depth and

the mean stress on the bed is found

l Bp 0dh
T b = gh -h  xyb 2 3» 3x

T U
xyb 2.9

From 2.8 it is seen that the drift velocity will be either positive or
negative when

! Bho� h   � � P !
Bx 3»

2.10
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where h x,z! is the local water depth. Abbott also shows that this bed

shear, for an oscillating flow, is in the same direction as the drift

velocity



In order to apply this criterion, accurate measurements of the mean
3hD

surface slope � and the mean density gradient ~n are needed, thegn

3x

~ = �  pD � !a 3v

3x By 3y
2.11momentum

32= pg
3y

2.12
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former being a difficult parameter to determine in most cases. Abbott

assumes the salinity gradient to be independent of depth. Data of this

type is used to test the criterion for the Thames and Hersey estuaries.

For the Thames, using data reported by Inglis and Allen �957!, no

reversal in drift velocity is predicted by this method, although the

field studies indicate the existence of a null point . Abbott suggests

an additional momentum flux must be prese~t in this case, perhaps a non-

l inear tidal convection. In the case of the Hersey, a null point

is predicted near the location observed in field studies. Here the

model appears to reflect the physical processes involved rather well.

Hansen and Rattray �965! present an analytical model of estuarine

circulation averaged over one or more tidal periods. A simultaneous

solution of the equations of mass and momentum conservation, assuming

geometric similarity of velocity and salinity profiles and lateral

homogeniety is developed. The estuary is divided into three regions

inner, central and outer, for which different assumptions about salinity

gradients and mixing coefficients are made. The equati.ons included in

the model are:



BU BV� + � = 0
Bx By

continuity
2 .1.3

BS BS B BS 3V � +V � = �  K � ! + � �  K � !
Bx By Bx x Bx By v Bv

llass

p= p �+mS!
0

state

where D is the eddy viscosity and a is a conversion factor for salinit>-

The boundarv conditions include zero velocitv at the bottom, known stress

at the surface, net flow equal to river discharge and. zero net salt f1~

�  K! ~Ud
dx x f 2.lg
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Hansen and Rattray do not discuss tbe differences between the classically

defined eddy viscosities and eddy diffusivities and the. eddy coefficients

which appear in their equations for conditions averaged over a tidal

period. These differences are examined in detail in the next chapter of

the present analysis. For the purposes of this review, it is important

to note that all eddy coefficients introduced into the equations include

neglected terms, terms resulting from averagi.ng over a tidal peri.od,

as well aa the averages of the turbulent cross-products .

For the central or middle region of the estuary, the authors assurae

that the longitudinal salinity gradient is independent of both depth

and longitudinal position. The velocities are assumed only dependent

upon depth, and thus similar at different stations. The vertical eddy

coefficients, D and K are beld constant with depth and the horizontal.

eddy diffusivity K is related to the freshwater velocity
X



g:>S h
3

0
a DK

XO

K K
~XD

2 2
U h

2.17

where S and K are S and K at x = 0 respectively, and V is the
0 xo X f

freshwater velocity. Hy a proper choice of values for R and 8,a

the solution can be fitted fairly well to some of Pritchard's James

River data.

For the inner and outer portions of the estuary, near the river

and ocean end respectively, different assumptions about eddy coefficients

are made. The solutions in these regions still require similarity of

velocity and salinity profiles.

Hansen �966! proposes a non-similarity solution for a similar set

of governing equations. Again, the longitudinal dependence of the ve-

locities and salinities is determined by the longitudinal variation of

the horizontal eddy diffusivity. However, Pritchard �952! shows that

the longitudinal eddy flux of salt is the smallest term i.n the time-

averaged salt balance. Hansen is thus using the weakest term in the

model to provide the longitudinal dependence.

Hc 'regor �972! develops an analytical model of the net, non-tidal

bottom transport velocity for an estuary. This model is similar to
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>lith the above assumptions, solutions can be found for the vertical

distributions of ve]oci tv and salinity. Fxcept for The possible variation

in K, the solution is independent of longitudina! position. For the

condition of zero for the net surface wind stress, two dimensionless

parameters determine the vertical velocity and salinity prof iles



other studies in that a longitudinal f orce bah ance includes onl v the

pressure gradient and the vertical eddy stress gradient . For the pressure

gradient, both a surface ~lope and density gradient are evaluated from

recorded data for the >'.umber estuarv . The solution technique introduces

a number of empirical constants for fitting these distributions, as welI

as an empirical expression for the mean eddv viscosi.ty. Py proper

fi,tting of the numerous constants, YcC'regor is able to match the net

bottom velocity zero points with the shoaling zones for the Vumher .

The analysis is a good illustration of the roles of the surface slope,

salinity gradient and river discharge in determining the zones of

high rates of shoaling. however, due to the need to fit several con-

stants to previous data, the model is of I imited predictive capability.
2 .3 Turbulent Diffusion

As shown in the previous secti on, mathematical modeling introduces
coefficients of turbulent diffusion for mass and momentum. There have

been a few investigations which have attempted to measure these. coef-

fic eats and relate them to the mean properties of the flow field .f i .ient

Kent and Pri tchard �959! analyse the vertical eddy flux of. salt
for the James Riiver, A mixing length concept, similar to Prandtl 's

classic mixing length theory of turbulence, is applied in this analysis .
Following Prandtl' a's arguments, a mixing length can be defined such that

2 2 I

2.18



where q is a constant, R is the mixing length, v s is the vertical eddy
3U 3s

sa flux, � is the vertical gradient of mean velocity and � the
3y Py

vertical gradient of mean salinity, all averaged over a tidal period.

This R is defined as the observed mixing length, and refers to the actual

stratified flow for the estuary. For the unstratified case, an adiabatic

mixing length is defined from earlier work by montgomery �943!

~  h-y!K

~x h
2.19

R =% �+gR!
8 i

2.20

where 8 is some unknown proportionality factor and R is the local
i

Richardson number

Bo
p Yy

2.21
3U

By

The observed mixing length is calculated from the extensive James

River data. The velocities and salinities are averaged over one or

mo« tidal periods and therefore a tidal mean mixing length is determined.

Although agreement between the observed and theoretical mixing length

is good, an improvement is found when an additional term for the wind

waves is included.
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where K is Von Karman's constant and h is water depth. Kent and Pritchard

find that the observed and adiabatic mixing lengths can be best related

by the expression



pritchard  ]960! tends the mixing length theory t<~ include the definiag

of an eddy diffusivity

2.22

where k is the mixing length developed by Kent and Prit chard �959! and

u* is a characteristic velocity. u* is related to the tidal current at

middepth, U , by similar mixing length arguments

* = U  y~ !  l + 0R !
h

2.23

The eddy diffusivitv can therefore be written

qUy 2
2

K =~�+SR!
y 3 i

2.24

The Richardson number Is approximated as

3p
RvR

U
�.7 � -!t 2

h
2.25

en'.

Rowden  l960! analvses velocity and salinity data for the Hersey
Estuary. Effective values for the vertical eddy diffusivity and eddv
v>scosity, averaged over a tidal period, for five depths at a single
station are determined. Values for the mean eddy viscosity are
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-3For the James River estuary, 8 was found to be 0.276 and tI was 8.59x10
eddv deaf fusivitv comouted from the above relationships represents the
non-tidal eddy processes. No discussions are presented which attempt

to relate this net eddy diffusivity to the real time tidal eddy coeffici-



ark f igured f rom a t ime � averaged longi tudina1 equat ion of m« ion

considers only the prcssure gradi ent and vertical eddv dif fusio» «

momentum According to Bowden's analysis, for the particular conditions

studied, the ef fective eddy viscosities for the tidal time-average are

about one-tenth as large as those expected for a non � stratified flo».

The coe f f ic Tents of vertical eddv di f fus ivitv are determined from

a salt balance eouation which considers onlv the horizontal advection

and the vertica] eddy diffusion, In this case, estimates of both the

t imp � averaged and tidal varving coef f ici ents are made. The di f f us ivities

averaged over a t idal r er iod are, in general, smaller than the non-aver-

aged coefficients. Agai~, Bowden concludes that the salinity stratifica-

tion yielded eddy diffusivities smaller than would be expected for a

neutrally stable fluid. In addition, the values for the mean eddy

viscosities are found to be greater at all depths than the mean ver-

tical eddy diffusivi.ties.

Bowmen �963! and more recently, Bowden and  ;illigan �971! have

studied additional data for the Hersey Estuary. As in the previous

studies, mean values for the eddy coefficients are computed from the

field data. When the ratio of eddy viscosity to vertical eddy diffusivity

is plotted against a local Richardson number, a distribution similar to

that of Hunk and Anderson �948! is f ound. Thus, it appears that

although the mean coefficients, averaged over a tidal period, vield

smaller values than the non-averaged coefficients, they may stil.l be

related empirically to a local Richardson number and therefore the

degree of vertical stratification.
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Uarleman an rpen �967! analyse data from a laboratory investigatior,

of estuarine dvnamics. A large salinity flume with a tidal and a river

control at either end was used to model partially stratified estuaries.

I?xtensive velocitv and salinity data were recorded and used to backfiguz'w

vertica] eddy diffusivities from the time-averaged salt balance equation

In this analysis, the horizontal eddy diffusion is neglected. Both a

vertical and horizontal dependence is found for the vertical eddy dif-

fusivity. Maximum values at each longitudinal station occur at about

middepth, with a somewhat parabolic decrease towards the surface and

bottom. In addit ion, the coefficients decreased from a maximum at

the ocean boundarv to a minimum far upstream. Using the relationships

of Pritchard �960!, mean vertical eddy coefficients were computed for

the same set of flume data. These equations, developed for the James

River estuary, yield vertical and longitudinal variations of the eddy

coefficients very similar to the backfigured experimental results.

prit chard's «quat iona did, however, produce slightlv smaller values at

«I I stations for these eddy diffusivities.

For both the work of Bowden and Har'leman and Ippen, eddy coefficienLes

for equations avt raged over a tidal period are backfigured from recorded
dat <. 'Various terms are neglected from the complete set of governing
equations in these analyses, and therefore, the resulting coeff icients
must include the effects of these neglected terms. These coef f icients
are not simply the averages over a tidal period of the actual eddv
cot fficients which relatea e to the turbulent fluctuations. These argu-
ments are devel o ed inp n greater detail in the following sections of
this report.
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III Theoretic al Considerations

3.] Statement. of the Problem

The analytical models of Abbott �960!, HcC,'repor �971! and Hansen

and Rat tray �965!, al though limited hy the. solution techniques, point

out. the possible advantages from proceeding in a parallel ~armer to

model time-averaged vertical velocity and salinity distributions. These

models include, for the longitudinal equation of motion, only the

pressure gradient, which contains the salinity gradient, and the eddv

transport of momentum. The velocity distributions determined from this

equation include all of the important features of measured net velocities.

Zt may therefore he concluded that this simplified balance of forces

describes the essentia] mechanisms of time-averaged circulation,

There are two important disadvantages of the Hansen and Rattray

model. The first is the necessity of dividing an estuarv into several

regions, each having a unique mathematical model and solution. Within

each of these regions the solutions maintain geometric similarity.

In real estuaries, however, there is a continuous transformation of

velocity and salinity profiles along the longitudinal axis. Therefore,

a solution without implicit similarity assumptions is a preferable

technique.

The second feature of the Hansen and Rattray model which may

be considered a weakness is the strong dependence on the coefficient

of horizontal eddy diffusivity. Numerous investigators have shown

the horizontal eddy flux of salt to be a minor term in the salt bal-

ance for estuaries, Eddy coefficients are difficult parameters to

measure, and even more difficult to predict, especially when averaged
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period. Thus until a more detailed understanding

eddy processes in stratified fluids is achieved, it seems reasonable

to include only the most important of t'hese eddv flux terms in estua~Y
models.

The obJective of the present study is to devel op an ana yal tical

the leaalmodel of time-averaged estuarine circulation which will avoid the

tractable features of the previous models described above. The gove~
ing equations are similar to Hansen and Rat tray's model, which was

origina11y suggested by Pritchard's analysis of the James River
es'tuary. A solution technique which is continuous over the entire
length of an estuary is desired and which makes no assumptions about
similarity of velocity or salinity profiles . Only the vertical eddy
flux of salt and momentum are included, and thus only two eddy
coefficients need to be specifi.ed. In order to nrovide the analytiem3.
solution with a predictive capabality, empirical correlations for
these two parameters with gross characteristics of the flow field are
soupht, as a fundamental feature of the complete solution.
3.2 Govern~in ~Euations

'1.2.1 introduction

The model equations describing the circulation and distribution
salinity are the equations of motion, of continuity, of conserva-

tfon of salt and an equation of state. The model is reduced to the
longitudinal and vertical dimensions by assuming lateral homogene ity .
Figure 3.l is a definition sketch showing the orientation of the
coordinate system wj,th the x - axis positive towards the head of the
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Figure 3.1 Definition sketch for model equations
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 upstream! d the y � axis posit r do wa d-

simplification is made restricting the width b x! and the mean water
level h x! to be functions of the longitudinal coordinate only ~

An

inflow of freshwater Q occurs at the far upstream end.
f

For the conditions described, the conservation of momentum for
the longitudinal direction can be written

aub Ou b Vuvb I a2

+~+ = � � ~bat ax ay = p ax 3

where u ~ velocity in longitudinal direction
v ~ velocity in ver'tical direction

t ~ time

0 ~ density

p ~ pressure

x ~ longi.tudinal direction

y ~ vertical direction

b width

This equation is a balance of forces for the estuary at any time in
a tidal period, i.e., before time-averaging. The viscous frictional
terms and Corioiis forces have been neglected . In addition, the
approximation of Soussinesq has been applied to neglect density varia-
t.iona in all but the bouyancy terms. The pressure is for the fluid
only, a'tmospheric pressure being assumed zero.

For the conservation of momentum in the vertical direction,
hydrostatic conditions are assumed . Thus, inertial and convective



�«eie»tions are neglected. The vertical equation of motion can

therefore be written

3.2

where g is the acceleration of gravity,

3.2,3 EcCuations of Water and Salt Conservation

For incompressible flow, the two-dimensional equation of continuity

is

dub dvb� + � � = 0
3x dy

3.3

The conservation of salt equation, before time-averaging, and

neglecting molecular diffusioa is

ash Bush 3vsb+ 3x+ ay =' 3.4

where s is the salinity and is a function of x, y, and t.

3. 2. 4 Time-Avera in of E uations
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There are three time scales of interest for the model being con-

«dered ~ Turbulent fluctuations of the dependent variables may be

to take place within a few minutes. These variables also have

or semi-diurnal component due to the tidal motion. Finally,

slow variations over several tidal periods can result from the changing

freshwater inflows and monthly changes in tidal amplitude. Following

classical methods, the dependent variables are written as the sum

f a me« and turbulent component, i.e., within the first time scale

ment ioned,



+ uu=u

v=v+v'

s~ s+s

3 5p -p+p'

p M p + p

where the prime refers to the turbulent component. These equation~
are substituted into the governing equations 3.1 � 3.4 and averaged

3 b 3 b Buvb 1 ~3 3u' b 3 'v bBt + 3» + By p By Bx By
3.6

1 30c~yg
p

Bub Bvb
+ � ~ 03» By

3.8

'deb Bueb Dvsb Bu's'b Bv's'b
3.9

The eddy flu»ca of momentum and salt, u', v'u', u's', and v's' are
usually written as the product of an eddy coefficient and the mean

be

gradient of the quantity being transported. For example, u may
12

Bureplaced by v �, where c would be a horizontal eddy viscocity.x Bx x
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H»ever, for the purpose of the present analysis the introduction of
eddy coefficients vill be postponed until time-averaging over a tidal
Period is introduced.



Zn order to facilitate the tidal time-averaging, the mean de-

pendent variables are divided into two components, a tidal mean, and

tidal varying term

u = U + u

v = V + v

s = S + s
3.10

p = p + p
t

p = P + p

2
3<u >b 3<» >b

BUVb

3x By By
BUb BUb
3t Bx

-1 3P b 3<u >b12

p 3x 3x

3<u'v'>b

3y
3 ' ll

1 BP0= � � � +g
p 3y

3.12

BUb BVb

Bx By
3.13
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where U is the mean horizontal velocity for a tidal period and u is

the harmonic component for the same tidal period, etc. As with the

turbulent components, the average of a harmonic term, e.g., u, s, overt' t'

a tidal period i.s zero by definition, Equations 3.10 are substituted

into equations 3.6 � 3.9 and averaged over a tidal period



BSb BUSb t t BVSb� + + + +Qx Bx By By

B<u's'>b B<v's'>b

B<~uv > � B BU
3.15

BC~vs > B BS
: � 0  � !

By y By
3.16

These definitions for 9 and K are convenient with regard to reducing
the mathematical complexity of the model. However, they are strictly
artificial in that they do not preserve the mechanisms of turbulent
mixing, i.e., tidal activity, in their formulation. En particular
equation 3.15 relates the net turbulent momentum flux <u'v'> to the
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where < > indicates averaging over a tidal period.
Prom the analysis of the James River data, Pritchard �954 >

argues that the dominant terms in the longitudina1 equation of motion
3.11 are the pressure gradient and the vertical eddy flux of momentum~
all other terms being of second order. This assumption is included
in the present development. In a later section it will be shown th>t
the neglected terms are indeed small for the cases studied . For the
salt balance 3.14 the tidal cross-products and horizontal eddy f Iux «m
neglected by similar arguments. The reduced equati.ons are further
simplified by introducing mean eddy coefficients for the remaining
turbulent terms



ap I a0 = � � � + � �  bD � !
p B» b ay y ay

3.17

1 BP0= � B +g
p By

3.18

Bvb Bvb

ax ay
3. 19

asb dbvs Bbvs B  b Bs
at + a» + By By y Bv 3.20

The value and distributions of the mean eddy coefficients are

unknown. If a solution to the above set of equations can be shown to

match recorded data by proper fitting of D and K , one must assume

that either all the neglected terms are zero, or more probably, that

these neglected terms have been absorbed into these coefficients. A

comparison of equations 3.15 and 3.16 with the classical definitions

of eddy viscosity and eddy diffusivity clearlv shows the difference

iu the meaning of these terms

a au a av�  <s � >! 9 �  D � !
By y By By y By

3.21
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net., non-tidal veIocity U. Ry purely physical arguments this flux

should be related to the tidal velocity u . This apparent inconsistancy

is partially resolved i.n Chapter V where D is correlated with the tidal
v

velocity. The equations are now written



Bs a BS�  <k � >! 8 �  K � ! .By y By By y By 3.22

~re specifically, D and K are not simply c and k averaged over
y y

t id al per I od .

3.2.5 Eouation of State

The effect of temperature on the relationshp between density an~
salinity is not included in this model. A simple linear empirical
pression is used

3. 23

p- p  I+as!
o

where p is a reference density and a is a conversion constant ~0

range of temperatures encountered in estuaries does not require s
more complex expression, in light of other model assumptions ~
3.3 Additional Assum tions
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The governing equations developed in the preceeding sections
not be solved analytically in their present form. Previous investiga
'tors have introduced similarity assumptions for the velocity and
sa>inity distributions as well as restrictions on the 1 ongitudinal
saltnity gradient . As stated in a preceeding section, the present
investigation seeks to avoid the limitations of a similarity soiutiom ~
However, as will be developed in the following sections, the longitud-
Ina> salinity gradient will be modified to allow an analytical solutioa
to be found

The Pritchard �952, 1954! investigation of the games River re-
vealed that for the stations and conditions of the survey, the



longitudinal salinity gradient did not vary appreciably with vertical

position. Harleman and Ippen �967! showed a similar pattern for the

analysis of data from a laboratory flume. Taken to the extreme, this

observed feature suggests that the longitudinal salinity gradient may

be assumed independent of its vertical position, i.e.,

 x!
as Bs
3x 3x

3.24

although

S = S x,y!

BSThe longitudinal salinity gradient � is replaced in equations
Bx

3.17 � 3.20 with the longitudinal gradient of a depth averaged salinity

S . Next a steady-state condition is assumed for the initial develop-d'

ment of the solution . This condition will be removed in later sections,

and an unsteady solution will be presented. In addition, the two

mean eddy coefficients 9 and K are assumed independent of vertical

position. These coefficients have been shown to represent the rather

complex effects of time-averaging and of the neglecting of terms
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Introducing equation 3.24 into the set of governing equations

3.17 � 3.20 results in equations, which although now solvable analytical-

ly, no longer describe exactly the presumed physical mode of the net

circulatio~. A close fit of velocity or salinity profiles between

field or experimental data and the theoretical solutions can suggest

the validity of the above assumption only within the context of all

the other assumptions made in developing these equations.



3.4

The synthesis of the original model equations, modified by the
assumptions discussed in section 3.3 begins with the equatio~ of
hydrostatic pressure

1 dP0 � � � + g
p 3y 3.12

Zquation 3.12 is intergrated in y

D g dy
3.25

and differentiated in x

pp &ho

3.26

applying Leibnitz' rule and the Boussinesq approximation. Eouation
is next substituted into the longitudinal equation of motion

Mhich nownow has assumed that D  x,y! can be replaced with D x!

1 dP dU
~ D0 3x 2

m 3y 3.27

cons f dered of smal ler order . The vet tical dependence of these

coe f f ic i ents is not known ~ al though several invest i pa tora have at temp"
to analyse these terms from experimental and field observations, as
discussed in Chapter II. Thus, D and K are assumeR to be independent:

y v

of y, and are replaced with effective coefficients for the entire dept'
of flow, D and I, respectively.



After substitution of 3.26

3.28

and differentiation in y, yields

3 U
Bp 3

p dx 3
m 3y

3.29

The equation of state 3.23 is next introduced into equaiton 3.29

Bs ay
3x 3.30

The steady-state salt conservation equation, with K  x,y!

replaced with K x! can be written

BUSb 3VSb bK 3 S2

Bx By 2
3y

3.31

This equation can also be written

U � +V � = K
as Bs 32s
ax By 2

By
3. 32

since

S   + !=0
Bx By

3.33

from continuity 3.19.

Equation 3.32 is further simplified by introducing the assumption

that the longitudinal. salinity gradient � can be replaced with a3S
3x
BS

gradient of the depth averaged salinity ~. The same procedure is
3x

applied to equation 3.31. The resulting system of governing equations
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ah0
g + g

ax p
m

3p 2
d � Ddy = D

ay



can be written

BS 3
Ugu � = D-

Bx
By 3.34

BUb 3Vb
Bx By

3 ~ 35

d 383'U � +V � ~K-3x By 2
By 3. 36

~ «ream function satisfying the equation of continuity 3 35 <s
defined

1 O'P 1 O'EU=- � �, V= ��
b dy ' b Bx

3.37

and thus the equations are reduced to

BSd D 34m
gCL Bx b34

3y 3.38

ay d 3'f VS � 3 SBS 2
By3x 3x3y 32

3y 3.39

3.5 B

The set of governing equations, �.38 and 3.39! includes a fourth'
order equation for the stream function requiring four boundary con-
ditions and a second order equation for salinity, subject to two
boundary conditions. These governing equations describe the dynamics
«» estuary averaged over a tidal period. The boundary conditions,



develocity � must be made zero for zero surface stress. At the bottom
By

y = h, two possible conditions for the horizontal velocity are con-

sidered. A no-slip or U = 0 condition must apply for a precise model

of the actual flow. However, f' or the rough natural bottoms, or

even in laboratory flumes, the turbulent velocities are very large

near the bed, going to zero in a very thin layer which can be neglected

in the analytical model. If the net velocity is to have its maximum
3U

Syvalue Just above this thin layer, a condition of zero gradient,

at the bottom is the appropriate model boundary condi.tion. An analysis

of the laboratory flume tests in Chapter IV will show that this latter
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as well, should he mean conditions for this averaged system. With

the assumption of steadv � state, any control vo] ume defined by two

vertical boundaries, the mean water suiface, and the bottom must

maintain a constant quantity of sal t and have a net through-flow of

water equal to the freshwater discharge. No flux of water or salt can

occur at a horizontal boundary, i.e., the surface or bottom. Frictional

stresses can be applied at both the surface and bottom and the condition

of no sl.ip of the horizontal velocit.y on the bottom should also be

considered. These various boundary conditions are examined in the

following paragraphs and a set of conditions is selected for in-

clusion ln the analytical model .

Considering first the equation of conservation of momentum 3.34,

four boundary conditions are needed. Surface wind stresses are neglec-

ted, and since the mean eddy coefficient D has a finite value at the

surface by assumption, the vertical gradient of the net horizontal



by the requirement that the integral of the net horizontal velocity
the depth must equal the freshwater discharge per unit width, f/b-Q

By assigning the stream function a zero value at the bottom, its
surface value must equal Q

These boundary conditions for the equation of motion 3.38 may
be susmlarized as folio~a:

BU 3 'Fy 0,� =0, � � 0
By 2

3y zero surface

stress

y ~ h, U ~ 0, � 0av

3y zero bottom

velocity

aU aty-h.� -0, - � =0
2

3y zero bottom

stress

h

� dy- �  -'f +V!
O'P l

b o h
0

b

f/b - lj dy = -�
b

0

therefore

y h,y-0

y-0,'f=q
f conservation of

freshwater

cpnd j tipn of negligible stress results in a c1 oser f it o f the m«h
ematical model to experimental and field velocj.ties. However,
the purpose of examining the behavior of these two possible approach~~ ~
splutipns for both are developed in this chapter.

The remaining two conditions for the stream function are specififZed



Two boundarv conditions are needed to satisfy the salt balance

equation 3.39. Ideally, these conditions should specify a zero flux

of salt at the surface and the bottom. As the vertical velocity V

will sat i sf y the zero flux requirements. The f orm of the solution of

equation 3.39, however, does not permit the specification of the

gradient of the salinity at two boundaries. This restriction will be

fully explained in section 3.7 . The consequence of. this limitation is

that a condition of zero gradient is specified at either of the two

boundaries and a second non-gradient condition for salinity is intro-

duced. If the salt balance equation is an accurate description of the

physical processes, a computed gradie~t at the other boundary, which

has no specified condition, should also be zero.

The alternate boundary condition for the salt balance is a

statement that the depth averaged salinity must equal a prescribed

value, S . This mean salinity S also appears in the modified long-

itudinal salirri.ty gradient . . This condition, with either aa d

zero gradient at the surface or at the bottom, completes the boundary

conditions for the model. These final conditions are written

asy=0, � =0
ay

zero flux at

surface

asy=h,� =0
By

zero flux at

bottom

as
is zero at these boundaries, the flux reduces to K � where K is

ay
as .nan-zero. Thus, a condition that � is zero at the surface and bottom
ay



h

], Sdy=S
h specification pf

mean salinity
3.6 Non-Dimensionalization of Equations

Qf
9 =-� S S

o
3.40

8
d: ��

S
o

where L is the mean inti an ntrusion length, defined as the distance
the ocean boundary to a oi try o a po nt where the time-averaged, depth
salinity is one percent of the

o he ocean salinity. S is the ocean
osalinity, h is the depth of the

ep o the mean water level and Q is the fres
fwater disch rcharge, as previously noted.

These quantities are intr
e n roduced into equations 3.38 and

gaS, ae~ DQ 4o d f Q
3  4i hb3q

3.41
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As with most probIems of fIuid dynamics, it is convenient
deve1op analytical solutions in a non-dimensional form in order to
permit generalized discussions of results . The choice of terms intrp-
duced to non-dimensionalize the various dependent and independent
variables, although somewhat arbitrary, should recognize the possible
difficulties in quantifying these new parameters . The foIlowing
defintions will be shown to satisfy this condition:



f 3 i o30 o3 6
3.42

by

0 7
2

37]

3.43or

3 0 0
2

av

0

and

3e
0,

or

30
1

dp

3.44S
dq =

S
0

3.7 Analytical Solution for Stead -State Conditions

The steady-state equations of motion and salt conservation, in

dimensionless form are

g S hb dBd >4~
4

p

i f 3Q

3.45
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The set of boundary conditions developed in section 3.5 is represented



Bu d Be Be i B ebKL. 2

3.46Btb BE Bn BE Qfh

can be further simplified by defining tao coefficients,

goS h b
4

0
Ci F! = L

i f
3.47

KL b

C2«' 0 h
f

3. 48

Equation 3.45 can be solved for the stream function 'P by integrating w+tb.

y four times

B& 4 3
-C � � +a � +a � +aTl+ad n Tl

1 3
4 16 22 3 4

here a a a and a are all functions of  , and are evaluated from
1' 2' 3' 4

the boundary conditions. This determination vill be presented for two

cases, depending upon the choice of boundary conditions.

case 1: zero bottom velocit

For this case, the boundary conditions are

B2@2 = 0, 'P = 1, 0 = 0
ae

3. SO

-0, 0=0, rj=l

and therefore
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+herein Q, 9, 8, g and Tl are all dimensionless variables. These equat-+ons



B0

a = 3+8 C = o
2

3.51

3 1 d

3 2 48 1 B 

a = 1
4

Substituting these values into 3.49 yields

BR C 2 d 1� �  - q + 2 n � a! � rl + 1 + �  z -1!� - � ! 3.52
BF 24 2 B  24

case 2: zero bottom stress

For this case, the boundary conditions are

a 0 q=0

3.53

B |I
0

BR2
4=0,

and therefore

BOd
1 2 1BE

a = 0
2

3. 54
C Bj!

3 24 BP
1 a = 1

Substituting these values into 3.49 yields

d l 4 3+2@ -q! -q+ l.
BQ 24

3.55
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The difference between the stream function for the two cases is



f   ,q!: �� ae

an 3.56

and substituted into a modified form of equation 3.46

Bf B E n!   A E n!
!n c2  ! c2  ! 3.57

where

ay aed
A«,rI! - � ��

am a<

KL b

CZ«' - oh
f

Fquation 3.57 is multiplied by an intergration factor

exp  J � � dO!8

C2

and the solution for 3.51 is shown by Hylic �960! to be

f g,q! exp  J � dry! J � exp  j � � dR! dqrA 8

C2 C~ C

3.5B

+ b  g! exp  J � drl!8
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The solution of the salt balance equation 3.46 is dependent upon

stream function tJ' and therefore on the choice of case 1 or case 2- H~~

ever, the general solution can also be deve]oped in terms of an un-

specif ied stream function. A dummy variable f «,q! is defined



wherein b  f.! must be evaluated from the boundary condition. At this

point it is clear that only one gradient condition for salinity may be

included, as noted in section 3.5. There is no reason to expect that
BOthe choice of boundary for specifving ~ = 0, i.e., f  ,g! = 0, is
3g

important. Thus, for convenience this condition will be applied at the

surface, r] = 0, and this determines that bi  ! = 0.

A second condition is ~ceded to specify the salinity from equation

3.56,

S  ,V! - I f  K,n! dn + b2<g! . 3.59

b2 ~ 8d I f f   rl! dry dq
'0 '

3,60

and thus

8 F.,e! = f ~,n! da + Bd � J I f F.,R! da dR.rl

0

3.61

Equation 3.61, although awkward in appearance if written in terms

of the stream function, may be evaluated easily by numerical intergration

using a digital computer.

3.8 In uts for Solution

In the development of the solutions for the stream function and

salinity, several parameters have been introduced and assumed known

These parameters are reviewed in this section and possiblea priori.

sources of quantitative evaluation are discussed.
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This condition, stated in equations 3.44, is that the depth average of tbe

salinity must equal a known value, Od



The depth average of the salinity, averaged over a tidal Per-er i.od,

3S
S and its longitudinal gradient d the
d 3x must both be specified

solutrons. For the purpose of evaluating the model. from rcc«de d data,

these parameters can be simply backfigured from the measurements.

ever, in order for the analytical model to have a predictive caps

these terms must be predictable themselves. There have been nutnerous

semi � empirical fits for this one-dimensional salinity dist ribut io< ~

Harleman and Ippen �961!, McGregor �972! and others . However

ly developed numerical model by Thatcher and Harleman �972! permit

one to compute a one-dimensional unsteady salinity distribution-

approach results in a general, non-empirical analysis for this input

parameter. A summary of their model, and the details of its coupling

with the analytical two-dimensional solution are presented in Chapter V

The intrusion length can also be evaluated by their technique.

The freshwater inflow and ocean boundary salinity are considered

to be fundamental quantities, as are the depth and width distributions.

The remaining two quantities needed to evaluate the analyt.ical

solution are the eddy coefficients, K and D. Nothing can be said

about these terms prior to their evaluation from recorded data . The

procedure for their determination is to fit the analytical solutipns for

velocity and salinity with flume and field data and to pick the best

fit values for K and D by trial and error. Since the stream function

is dependent only on D, this procedure is not too cumbersome even thou

the salinity is dePendent on both D and K. This Process of back

cul.at Ing D and K from recorded data is repeated for several data
a sets.
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3.9.1 Velocit Profiles

For the condition of zero horizontal velocity at the bottom, the

dimensionless stream function, equation 3.52, is

d 1 4 3 q 2 d 1
39 C

'4 = � �   � q + 2rI -v! � tI + 1 + �  q -1! �- � � ! 3.523$ 24 2 3F. 24

where

gaS h b
C = o

LDO

The horizontal velocity, normalized by the freshwater velocity U

is

� = � � �  - 4rI + 6' � 1! -134 d 1 3 2
3rj 3$ 24U U

3.62

Z "d '1
� � � � � � ! �n � 1!

2 3g 24

S9

The resulting distributions of these coefficients are then correlated

with parameters characteristic of the flow conditions, as is shown in

Chapter IV.

In summary, the parameters needed to evaluate the analytical

solutions for velocity and salinity, except for the coefficients D and

K, may be determined either from recorded data or a numerical model.

The former method is used first to appraise the model and to back-figure

values for D and K. The latter method, a coupling with a numerical

model demonstrates the predictive capabilities of the analytical model,

3-9 Theoretical Velocit and Salinit Profiles



and the vertical velocity normalized by this same factor is

2

i 1 d 4 3 q 2
h 24
  -V + 2q -V!- �  q -1!

2

a e c,2 2 24V "i ay
Uf h

g.63

Table 3.1

Model Parameters for Figures 3.2 � 3.4

29.2S
0 ppt

160L

.5

.75

.75

.66

ae

ar,
.97

a e
d

az
-2.86

2
ft /sec

2
ft /sec

.24xl0

.18x10
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The broken lines in figures 3.2 and 3.3 illustrate these wel~cit

profiles for representative values of input parameters listeg

3.1. The horizontal veloci.ty profile, f igure 3.2, clearly sho~s

boundary conditions of zero gradient at the surface and zero
ty at



6 5 4 3

U/U

Figure 3.2 Analytic solution for horizontal velocity profile

6l



C 0 -2 -4 -6 -8 -10 -12 -14
y/U x ]0

f

Figure 3. 3 Analytic solution for vertical veIocity prof i1e.
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the bottom. The flow reversal, with seaward flow in the top region

and landward flow in the bottom repion is also demonstrated. The inter-

gral of this profile is equal to 1.0 which is a net discharge af the

freshwater inflow. FiPure 3.3 shows the vertical velocity profile for

the same conditions. This velocity is zero at the surface and bottom,

and directed downward throughout the depth. Fram the form of equation

3.63 it is apparent that the direction of the vertical velocity2depends
9

an the sign of the second derivative of the salinity gradient
aq

a point which will be further discussed in section 4. 2.2. The maximum

29 c

+ 2q � q! � n + ].!� 24 3.55

Proceeding in a similar manner,

� 4' +6r, � 1 j-1
V 94 d 1 3 2
Vf ~q 3  24 3.64

and

2
V Li3q L, C 39d 4 3
U h BF, h 24 2

 - q + 2q 3.65

These profiles are shown as solid lines on figures 3.2 and 3.3. Far

this case, both the horizontal velocity U and the vertical velocjtv

V are symetric about the mi.d-depth, v/h = 0->- In addition, the hor-

izontal velocity is symetric about a vertical coordinate of U/U = ] .0.
f
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value of this velocity occurs near mid-depth.

The second case for the bottom boundary condition i.s that the vertical

pradient of the horizontal velocity is zero, as stated in equation 3.55.



The mean eddy coefficient D, as well as all otl!er input parameters,
is the same for both cases plotted in figures 3. and 3. 3 Thus, for
the same value of D, the boundary condition of zero hot tom velocity
results in a significant reduction in both the horizontal and the
vertical velocities over most of the depth. This means that the choiQQ
of boundary condition will influence the best-fit values of D for a
given set of experimental or field data.

3.9.2

The model solution for the vertical salinitv distribution is give !

e  ,n! - j e  ,n! an+ ea �    ,n! an an
0where

«-,n! - ~xn  j ,< � an! � > � � ' n»  j- M � ' an an"d
C2 dR 3  C2 d!F Cand

K  ! L b q!

~<le >  !
3 .62

Using the same data from Tablerom Table 3.l, as in the example for the velocity
profile, figure 3,4 illustrate

rates the salinity profil.e for zero bottom
velocity  broken line! and zeron an zero bottom stress  solid
from these figures that the choice

e c oice of velocity boundary conditio«infnfluences the verti 1 I
ca sa init d 'y istribution if the sameis used.

ln on obtaining equation 3.6l for thon . for the salinity distribution ~ a"assumption of zero verti 1
r ca gradient at

t the surface was made.
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Figure 3.4 Analytic solution for salinity profile



I V 1'.valuar ion of Steady � State Solution

4.1 Introduction

The analvticaI solution for velocity and salinitv distribution de-

veloped in Chapter II is evaluated with I aboratorv data from the Vicksburg

snlinitv flume, the Delft IIydraulic Iahoratory salinitv flume and the

James River field study. This comhined set of data covers a wide range of

flow conditions and degrees of salinity stratification, some of which may

partiallv invalidate model assumptions. These latter studies help to de-

fine the limits of model application. For each case studied, a best-fit

value for the two mean eddy coefficients is found at each longitudinal

station. All of these cases are assumed to be in a steady-state condi-

tion, i.e., values for velocity and salinity for successive tidal cycles

are assumed the same. This assumption is valid for the flume studies by

experimental design. For the .lames River study, steady-state can only

be an approximate condition, depending upon the freshwater hydrograph.

4.2 W.E.S. Flume

4.2.1 Des

The laboratory flume of the Corps of Engineers, U.S. Army, Vicksburg

Waterways Fxperiment Station  AS!, is described in detaiI in a VES re-

port �955!. The flume, schematically shown in figure 4.1, is a lucite

channel 327 ft . .long, 0. 75 ft, wide and 1 .5 ft . in total depth . At the

ocean end there is a tidal reservoir which can maintain a constant salinity

and a periodic surface level. The opposite end has a freshwater reservoir.

Roughness is achieved by 1/4 inch strips attached to the side walls on

2 inch centers. Different estuarine conditions are modeled by varying

the freshwater inflow, the tidal amplitude and the basin salinity.
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Detai led one-dimensional results are presented by Ippen and Harleman �961!

for numerous tests and conditions. Harleman and Ippen �967! present

two-dimensional analysis of three tests showing the average over a tidal

period of the vertical velocity and salinity profiles for several long-

itudinal stations . Table 4 .1 summarizes the flume conditions for these

three runs.

4.2.2 Fvaluation of Bottom Bounda Condition � WES 16

The depth-averaged time-averaged longitudinal sal.inity distribution

and its first and second derivatives is a required input to the analytical.

model. For the purpose of evaluating the model. solutions and determining

the eddy coefficients, this salinity distribution is determined from the

recorded data. An analytical function is passed through the data points,

and its first and second derivatives computed usted a ~s line computer

program, outlined in appendix 2 . Figure 4 .2a shows the depth-averaged,

time-averaged longitudinal salinity distribution for WES 16. The ex-

perimental points are the depth-averages of the vertical profiles shown

in Plate 11 of Harleman and Ippen �967!, and the smooth curve is the

fitted spline function. The first and second derivatives for this func-

tion are plotted in figures 4.2b and 4.2c respectively. As stated pre-

viously, the inflection point shown in figure 4.2c determines the long-

itudinal position where the vertical velocity changes its direction.

Harleman and Ippen �967! backfigured vertical velocities using

graphical intergration of the equation of continuity, Figure 4. 2d shows

these vertical velocities with the corresponding velocities from the

analytical solution, The agreement in directio~, and more significantly,

location of the reversal in direction  between 40 and 80! confirms the

69
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observat i on that. the inflection point of the first derivative of the

salinity determines this location. The large difference in magnitude

between the vertical velocities at station 5 is probably due to the fact

that in both the graphical technique of Harleman and Ippen and the spline

function of the present analysis, difficulty is encountered at the end

points, where extrapolation becomes necessary. Consequently, all analyti.�

cal results at the upstream or downstream ends of observed or predicted

salinity distributions must be viewed with a considerable degree of caution.

Having found the longitudinal salinity distribution function and

using the values for the other i~put parameters from table 4.1, the an-

alytical model can be evaluated for different values of the eddy coeffi-

cients. Two solutions sets are shown, depending upon the choice of bottom

boundary condition for the horizontal velocity. The computations are

carried out on a digi.tal computer, as is outlined in appendix l.

Case 1 � Zero Bottom Velocit

The equations for the model solutions for velocity and salinity are

given in Chapter 1II. Figure 4. 3k and figure 4.3b show

the best-fit comparisons of model and experimental velocity profiles for

5 stations, 5, 40, 80, 120 and 160 feet from the ocean end for WES test

16- At each station, a different value for the eddy coefficient D is

used, as listed in table 4.2. At station 5, very close to the ocean

reservoir of the flume, entrance effects, as well. as the influence of

extrapolated gradient.s, probably are responsible for the higher values

of D for both cases. At the remaining stations, the values of the eddy

coefficients do not vary much with the longitudinal position. From the

figures, 4 .3a � 4 .3b, it is seen that the condition of zero bottom stress,
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case 2, gives a better f it to the experimental data. Figures 4.3c � 4-3d

show the comparisons of salinity prof iles for the same f lume tes t ~ Clearly ~

the choice of velocity boundary condition has li t t le ef f ect on the sal iniety

profiles. Table 4 ~ 3 lists the best-f it values o f the eddy coe f f ic ient of

salt K for the WES test No. 16 for the two cases. Again, except for

s'tation 5, 5 feet from the flume entrance, the eddy coefficients do not

vary much along the length of the flume,

Based upon an evaluation of figures 4,3s � 4.3d as well as similar

plots for other MES tests, case 2, which states that at the bottom the

verti.cal gradient of the longitudinal velocity is zero, was chosen as

the most suitable boundary condition. In making this selection, certaiW

emphasis was placed on modeling the net velocities just above the bed

 which this case handles better than the condition of zero bottom velocity!

for the purposes of analyzing sediment transport problems. All remainiNg

comparisons o f experimental and analytical ve 1oc i ty and sa 1 in i ty pro f ilas

are for this zero gradient condition, case 2. Table 4. 4 illus trat es the-

comparison of computed and experimental velocity and salinity distributi-

onsns for WES test 16 for the zero gradient boundary condition. All

data in this table except the values f or D and K are d imens ionless, tha

2
latter having units of ft /sec. Appendix 3 contains the complete tab-

ulated summary of WKS test 16, as well as the data for the other tests

analysed in this study.

4.2. 3 WES Test 14 and ll

The other two RES tests used to evaluate the analytical model are

examples of a more stratif ied flow, test ll, and a less stratif ied f lo~

test 14. Figures 4.4a � 4. 4b illustrate experimental and model agreem~~t
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Table 4.2

Best � Fit Va1ues for D for WES-16

Case 2Case

Station

.35

40 .24

80 .26.12

.24.12120

.22.12160

Case 2Case l

Bu
0, y=hI

2 � 3
K Ft /sec x 10

'Stat ion

.18.07

.1740

80 .17.15

120 .2l.15

160 .18.15

79

u=0, y=h

D, Ft /sec x 10
2 -3

Table 4.3

Best-Fit Values for K for WFS-16

u=0, y=h

2 -3
K, Ft /sec x 10

3u
0 y=h

2 -3
Ft /sec x 10
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results for these two tests.

4.3 Delft Flume

of Flume4.3.1

At the Delft Hydraulics Laboratory an experimental investigation of

salinity intrusion in estuaries similar to the Vicksburg studies has been

carried out. The details of flume design and measurement technique are

reported in Delft �970!. Table 4.5 lists the basic Delft flume dimen-

sions with those of the Vicksburg flume for comparison. For the Delft

Table 4.5

Delft and Vicksburg Flume Dimensions

~V|cksburDelf t

327546Length, ft.

Depth, ft.  msl!

Width, ft.

Roughness

.7 .5

2.0 .75

 bottom!  side!

2
test the bottom roughness was achieved by vertical bars .5 x .5 cm in

cross-section attached to the flume bottom. Hy changing the number of

bars the roughness could be varied for different runs.

Four Delft tests were analysed with the analytical madel. All the

tests were for steady-state conditions and the longitudinal salinity

for velocity and salinity at station 80 for both tests. In figure 4.4b

 test 11! the salinity gradient at the botton y/h = 1.0 has an appreciable

slope, indi cating that perhaps the model assumptions are not as valid for

this degree of stratification. The tables in appendix 3 summarize the



distribution was backfigured from the recorded data as was done for

WS tests. Table 4.6 summarizes the flow conditions for these four

Tabulated detailed resul.ts can be found in appendix 3 which documen<

agreement between experimental data and hest-fit analytical solutiorrsft:
these Delft tests. Figures 4.5 - 4.8 illustrate these results at a ce~
tral section of the salinity regime .

4.4 James River Estuar

The Chesapeake Bay Institute 1950 survey of the James River es<

is described by pritchard and Kent �953! . Velocity and salinity dm
averaged over several tidal periods, are presented for three longit~
stations, shown in figure 4.9. Table 4.7 summarizes the flow c»disci
for the three periods of the survey.

Table 4.7

James River Estuary � Flow Conditions

0, m /sec
3Date

S ,ppt
0

L, m

90,900

94,127

18-23 June

26 June-9 July
124.

104 . 24

17-21 July
24130 . 90,000

The data in the fthe field survey report did not include sufficient long-
itudinal salinit sy stations for direct estimates of the intrusion
and ocean sal ini t Chy  Chesapeake Say salinity!. The ocean salinity
estimated f rom an un ublis ep lished report by the U.S. Army, Vaterways ExP~>-
iment Station, describin tg the salinity verification of a hydraulic ~c'del
of the James River estuar . T

v The intrusion lengths were determined f r otn
L~ e   i 9>0!, f f gure 14.10 which~ w ich plots intrusion length as a functiorr of
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freshwater discharge.

The depth of mean water was assumed to be 7.5 meters for all three

stations, and the mean widths were determined from the CBI report as

follows:

mean width, mstation

3000.

2350.

1640.

Tables in appendix 3 present the comparison between field measurement

and analytical solution for velocity and salinity with depth. Figure 4.10

illustrates this comparison at J � 17 for 26 June-7 July. The difference

between computed and actual velocities over most of the depth is probably

due to several factors, including the uncertainity of time-averaged field

measurements, and more importantly, the simpli fying assumption of constant

width with depth for the analytic solution. The salinity profiles for

this same station show better agreeme~t than the velocities. However,

there appears to be a sharp vertical grad'ent near middepth for the field

data which is not observed for the analytical solution. This difference

may be a result of the same factors cited before for the velocity profile.

In general, the analytical model, although clearly capable of re-

producing flume condi tions more exactly, does not appear to break down

for the prototype conditions and scales exemplified by the James River

estuary.

A.d Comments~on Ne lected Terms and Other Nodal Assumptions

In the development of the governing set of model equations, the time�

averaged convective terms have been neglected from the longitudinal

9l.



Q D

92

9/< 'qadi

PJ
LJ

0 N 0



cquat ion of motion, leaving the pressure grad ient ba1 anced bv the vertical

eddy dif fusion of momentum

BU BU I BPU � +V � = � ----- +D-�
Bx By p

By
4.1

negl ected

middepth where these t.erms, and especially the ve.rtical convection V�
BU

By

is of re1atively important size. The non-neglible order of these terms

indicates that the mean eddy coefficient D is an ambiguous parameter,

including both convective and diffusive components. Table 4.9 shows

a similar comparison of the order of the convective terms for Delft test

116 and the James River estuary, 26 June � 7 July. Again, the neglected

are consistently smaller than the pressure gradient-turbulent dif-

fusion terms, but of significant. size at about middepth.

second important model assumption is that the longitudinal salinity

gradient � is independent of its vertical position, and thus longitudinalBS

Bx

sa»nity prof iles at different depths are assumed parallel. Figures 4.11,

4 ~ 12, and 4. 13 illustrate these prof iles for WES 16, Delft 116 and James

26 June-7 July, respectively. This assumption appears to be quite

«»onabl e from about x/L = . 25 to x/L, = . 60 and rather questionable up-
1 i

and downstream of this region. However, the tabulated analysis of

These neglected terms can now be. computed from equations 3.64 and 3.65

and compared with the remaining terms to determine the reasonableness of

the assumtpion. This comparison is shown in table 4.8 for WES test No. 16.

At all stations and depths the neglected terms are smaller than the re-

maining terms, but there are several places, e.g., stations 40 and 80 at
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Table 4.9

~Com arisen of Size of Ne lected Terms for ton~i tion

of Motion for James River and Delft Flume

Delft Flume T-116

x/L. = . 29
I

y/h U � V�
BU BU B U
Bx By 2

By

-4 2
 x 10 m /sec!-6 2

 x 10 m /sec!

Q. .1.0 16.2

.4 9.7

.9 3-2

0.

.2 .07

.4 .02

.6 .0.08 .9 -3 2

.6 .4 -9.7

s0 -16 ' 2

,8 .0

.02

95

James River 26 June � 7 July

x/L. = .29
1

y/h U � V�
BV BV B2v
Bx By 2

By

.0 4.8

.02 2.9

.05 l.

.05 -1.

.02 -2.9

.0 -4.8
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the varif>us flume tests seem to indicate that the anaiytica] solution

is not very sensitive to violations of this assumption, since good ex-

perimental-analytif:al comparisons are found over the entire salinity

region.

A.A An~al sis of Time-Averaged Edd~Coeffieienfs

In the preceeding section best-fit values for the time-averaged

eddy coefficients D and K were determined for 10 tests i~eluding 3 proto-

type field studies. These tests covered a wide range of density strati-

fications and hydrau1ic conditions, The coefficients of mean momentum

flux and mean salt flux for these tests show a varying degree of long-

itudinal variation as summarized in table 4.10. As is discussed in sec-

tion 4.2.2, the upstream and downstream ends of the salinity distribution

have been eliminated from this table. This procedure removes errors

introduced by faulty analytical extrapolation of the spline function

used to compute first and second derivatives of the longitudinal salinity

distribution. To facilitate cross-comparisons between flume tests, the

units of the eddy coefficients are all given in the NKS system in this

table .

The longitudinal variations of the mean eddy coefficients shown in

tabie 4.10 suggest that although D and K are functions of x, this de-
pendence is of secondary importance. By introducing the additional
a~sumption that these mean eddy coefficients may be replaced with effec-
tive constant values for the entire longitudinal distance of the salinity

regime, correlations of these coefficients are greatly simplified-
Table 4. 11 lists the arithemetic mean values for the various tests an-

alysed, def ined as 5 and K. The ratio of f reshwater velffci tv llf to

99



Table 4.10

i~on itodinal Variation of Mean Eddy Coeffieienta

2
K,m /sec x 102

Dam ttsec x 10Test/Station x /L
i

.12WKS 11

MS 14

.29 .29

.35

.48

.26

.22

.44

.66

.19

.26

.28

MES 16 .25

.50

.75

.17

. 1.6

.20

.22

.24

.22

James River

18-23 June .30
2.1

26 June-

7 July . 30 6.5 3.1

17-21 July .30 6.5 2.1

100

DELFT 117 .29
.43
.57
.71
.86

DELFT 116 .29
.43
.57
.71
.86

DELFT 121 .28
.41
.54
.67
.81
.94

DELFT 122 .29
.43
.57
.71.

.56

.60

.68

.64

.84

.64

.64

.84

.68

.92

.72

.76

.84

.80
1.12
1.04

.72

.76

.76

.84

.15

.17

.13

.18

.22

.20
,15
.13
.18
.34

.06

.15
a06
.15
.11
.15

.11

.15
a06
.18



Table 4.11

Pean Values of Eddy Coefficients

Uf/u0
Test

James River

.0085
18-23 June 2.17.5

26 Juue-

7 July
.007

6.5

.009
17-21 July 2.1

101

WES 11
14
16

DELFT 117
116
121
122

D
2 -4

m /sec x 10

.29

.24

.23

.66

.74

.88

.77

K
2 -4

/sec x 10

.12

.36

.18

.17
,20
.11
.13

.13

.029

.047

.14

.15

.09

.11



be computed with the aid of a one-dimensional numerical model, as pre-

viously discussed in Chapter III. The determination of K and D for input

to the model is made by using an empirical correlation of these con-

stant coefficients with the gross characteristics of the estuarine system.

The set of governing equations developed in Chapter III can be written

d0 4

C1 3  ~4
Bp

4.2

and

2

C  q!
aZ ar. an a: 2 2

3T]

102

maximum flood velocity at the ocean boundary u is also shown in table
0

4.11. This velocity ratio is a significant parameter for defining flow

conditions and degrees of stratification, as will be shown in the following

discussion.

Figure 4.14 demonstrates the effect of using K and D in the place of

the local best-fit values for Delft test 116. It is clearly seen in this

example that the constant coefficients yield quite useful results for the

velocity and salinity distributions. This example is typical of the in-

fluence of this new assumption, and similar results can be shown for the

other tests analysed.

The significance of being ab1e to use constant values for D and K,

i.e., D and K, is that only two unknown parameters need now be specified

in order to apply the analytical model to a given set of estuarine con-

ditions, i.e., freshwater discharge, ocean salinity, depth, etc. All

other model parameters can be readily determined with the possible ex-

ception of the longitudinal salinity distribution. This latter input can
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where C , C , h, b, Q , D, and K are all functions of the longitudinal

coordinate

Following the arguments presented above for using constant values of

D   ! = D and K  F! = K, the dimensionless form of the governing equations

suggests that a possible pair of useful parameters for correlating K and

D is

gaS h b
0 0 0

L 0 D
'fo

4.4

and

K L.b
i 0

2 Q h
fo o

where the zero subscript, e.g., b , h , refers to the downstream limit
0 0

or ocean boundary of the estuary. All terms in these new terms are

assumed constant over the longitudinal and vertical dimensions, and the

only unknown parameters are K and D.

The values of K and D should be a function of the degree of mixing-

of the flow field which is in turn a function of the tidal activity. In

recognition of this dynamic relationship of the physical system being

modeled, C and C have been correlated with a characteristic non-time-

velocity is specified as the maximum entrance flood velocity u , non-

dimensionalized by the freshwater velocity at this same boundary
0 0

Q jbh U
fo o o fo

C
3 U u

0 0
4.5

104

averaged tidal velocity. To be consistent with the definitions above, this



The value of the maximum flood ve1ocity is considered to be a depth

averaged term, as might be estimated from a table of tide currents, or

some other similar hydrographic reference.

Tables 4.12a, 4.12b, and 4.12c summarize the computations of C

C , and C for the estuaries included in this development. Figures 4.15

By a simple rearrangement of terms, the unfamiliar parameters Cl and
C can be shown to be equivalent to the products of several. more conven-

2

tional quantities.

ugS h b
4

C =
o 0 o

0 L, D
'fo i

uSgh h hu u
-   !  � !  � !  � !2 L - lj

u i D fo
o

4.6

105

and 4.16 show the correlation of Cl with C> and C2 with C>. In general,
this straight forward technique of using dimensionless groups defined bv
the equations, yields seemingly significant correlations. llo explanation
is readily available to explain the point for WES 16 on figure 4.15,
although the complex manipulation of the data could easily have introduced
an improper value for one of the component parameters.

It is signi.ficant in fi.gures 4.15 and 4.16 that both laboratory flume
tests and prototype field surveys follow the same correlations. In
addition, the range of degrees of stratification include the highly strat-
ified Delft tests 121 and 122 as well as the nearly well mixed middle
reaches of the James River estuary. Thus, this empirical approach to
evaluating the effective coefficients of mean eddy flux, D and g is
apparently applicable to naturally occuring estuarine conditions.
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Th~~~ latter groupings more clearly show that the dvnamics of the net

1 11

circulation and net
h

  � !, a densimetric
1,

i

u h
and

0 0

salinity distribution are dependent upon scale ratios,
nS gh

0 0tidal Froude number, >, and eddy coefficients,
0



V Anal sis of Transient Flume Stud Usin Cou led One and. Two
Dimensional Models

5.1 Descri tion of Transient Test Procedure

The WES salinity flume described in Chapter IV has been used to

evaluate the transient behavior of estuaries as well as the steady-state

conditions discussed previously, WKS test 42 was conducted with a

transient freshwater inflow, decreased in discrete steps for 25 consecu-

tive tidal cycles, starting from a steady-state initial condition. All

other flume variables, including tidal amplitude and ocean salinity

were maintained constant during the course of the test, as indicated

in table 5.1

Table 5.1

Summary of Flume Conditions for WES Transient Test 42

depth, msl

width

length

tidal amplitude

tidal period

roughness  side wall!, n

initial freshwater discharge

final freshwater discharge

.5 ft.

.75 ft.

327. ft.

.05 ft.

600. sec

.02 f

.025 ft. /sec

.00652 ft /sec
3

112

The test was begun by running 23 cycles at a freshwater inflow of

3.025 ft /sec and thus permitting an equilibrium initial condition to be

reached. For the following 25 cycles, the freshwater inflow was decreased

.00077 ft /sec at the end of each cycle. Measurements of velocity were3



for cycle 1  last steady-state cycle prior to decreasing Inflow!

and cycle 25 for three depths, .05, .25, and .45 ft., at five stations,

4p, gp, 1 20 and 160 ft. from the ocean end at one minute intervals for

cycles. Similar times, depths and stations were used in measuring

salinities for cycles 3, 6, 14 and 24,

5.2 Discussion of One-Dimensional Numerical Model and Results for Transient
Test

The numerical computation of the one-dimensional longitudinal salinity

distribution was carried out with a model presented by Thatcher and

Harleman �972! . This model is a real-time simultaneous solution of

the one-dimensional  longitudinal! equations of momentum, continuity,

state, and salt conservation. Real-time refers to time variations

within a tidal period, unlike the analytical two-dimensional model,

which is averaged over a tidal period. Since the numerical model can

handle boundary conditions which change with successive tidal cvcles,

e g., tidal amplitude, freshwater inflow, etc., it can compute the tran-

sient or natural behavior of real estuaries. Finally, the numerical

model has been developed for variable area estuaries, a conditioon Itzon which

is not required for the constant width salinity flume consldonsidered in

this discussion.

e governing equations for the numeric

continuit e uation

5.1
b+q=p3h 3Q

Bt Bx

113



mamentum equation

� !O � aU a~ Ad
+U � +0 +g � A+g � '+g ~-= 0

3 a.
AC R

where

= dis hcharge, averaged over the cross-section

~ lateral inflow per unit length

longitudinal velocity, averaged over the cross-section
A crass-sectional area

acceleration of gravity

hydraulic radius- b+ 2 h+ q!
surface elevati on relative to local mean water level

C = chezy coefficient

+~=  EA � !GAS 3 S d
3 t Bx ~x Bx

5.3

where

S = salinity, averaged over the cross-section
E = coefficient of longitudinal dispersion

114

d = distance from the surface to the centroid of the cross-section
b = channel width

h ~ mean water level depth



7
a

0 = 0.75 s + 1,000.

where

S ~ salinity in parts per thousand

3
p = density in kg/m

The coefficient of longitudinal dispersion E is related by

Thatcher and Harleman to the local longitudinal salinity gradient- as
ax

0

E x t! = K i � -+ F,l as
llo

' ax

o 0
where S = � and x = x/L, S being the ocean salinity and L the length

S 0
0

of the estuary. E is the dispersion coefficient applicable to a com-
T

as
pletely mixed region, where � = 0 or to the freshwater tidal region

ax

upstream of the limit of salinity intrusion.,

E = 77nUR� 5.6

2
P

E

Q T

5.7

where P is the tidal prism defined as the volume of water entering on
T

u
o

the flood tide. F is the densimetric froude number,
0 I

~a,p r.
gh

115

where n is the Manning's coefficient.

Thatcher and Harleman have found a correlation for the dispersion

parameter K and the stratification as represented by the estuary number



wherein u is the maximum flood velocity at the entrance and hp is0

the change in density over the entire lengt.h of tbe estuary.

The dispersion parameter K is normalized by the maximum f»o1 ood1
K K

1velocity and the length of the estuarv . The correlation of
U L

Owith the estuary number E includes data from five YES steady-state
D

flume tests, and several studies of variable area estuaries for oth

quasi-steady � state and transient conditions. Figure 5.1 shows

correlation. Since all parameters except K can be computed directly.
1

this correlation can be used to compute the changing value of
persion parameter K and therefore the dispersion coefficient E x,t!1'

for the transient study.

i,sing boundary conditions of known tidal amplitude and flood tide
salinity at the ocean end~ the numerical model computes the elev«i«s

discharges Q and salinities S for discrete time steps at discrete
points along the flume length. Finite difference techniques are used

to find the numeri.cal solution, combining both exnlicit and impli.«t
methods.

Table 5.2 summarizes the flume conditions which are the input to
the numerical model.
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Table 5.2

W.E.S, Transient Test 42 Flume Conditions

600 sec.

327 f t.

0.75 ft.

0.05

l/6
.02 ft.

29.0 ppt

.05 ft.

tidal period

flume lenpth

width

depth, msl

Hanning's n

ocean salinity

tidal amplitude

ll8

The value for the freshwater inflow varied from the initial discharge
3 3of 0.025 ft /sec to a final value at the 25th cycle of .00652 ft /s«

as discussed. The dispersion parameter K was taken from figure
1

which yielded a value of .31 for cycle 1 and a value. of .21 for cycle

25- Figures 5.2, 5.3 and 5.4 illustrate the numerical so1ution for the.

one-dimensional salinities at stations 40, 80 and 120 for the 25 tran-

sient cycles of WKS test 42. The very pood agreement between experimental

data  the crosses! and the computed salinities shows the capabilities

of the numerical program. These figures, 5.2 � 5.4 also show the ef feet

of a decreasing freshwater inflow on the di.stribution of salinity in

th«lume ~ A steady increase in salt level and length of salinity int~-

s«n is «en to be a result of this type of freshwater hvdrograph. The

of this flow pattern on the vertical profiles of velocity and

salinity as well as its influence on sediment transport are examined in
the following sections of this chapter.
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3.3 ~Anal tieal Solution for Contend~Flow Conditions

Ybe analytical model presented i n Chapter 1 I I was developed for

estuaries in a steady-state condition, i.e., inf]uencing factors such

as tidal amplitude and freshwater inflow remain f:onstant far successive

tidal cycles. For the analysis of the transient flume test, or for more

realistic natural conditions, an additional term is included in the

equation of salt conservation, 3.32

as � as as 3 s2

3t ax 3y
ay

5.8

3Swhere � is the average over a single tidal period of the temporal change
3t.

as
in salinity S  x,y, t! . For steady-state conditions, � - is zero, but this

is not the case for transient conditions, since it varies by def inition

from one cycle to the next. The other model equations are unchanged

with the note that the freshwater discharge 0 is now a variable and has
f

is introduced for the term which is similar to that made for the-
as as
3't ax

term in equation 5.8. Since it has been shown reasonable to assume that

as 3sf y!, this same substitution, � - $ f  y!  and
as

3't

dwith 3 ! is intraduced,
at

3s
thus can be repl.ac eh

at

122

a different value with each tidal cycle. However, the momentum equations

remain the same as for the steady state because bath temporal and con-

vective accelerations can be neglected .

In order to solve this modified set of model equations, an assumptiffr.



d 'd 3S "{ S
� -+ U +V � '= K---,�

3t 3x 3y, 2
3 y

5.9

Equation 5.9 is non-dimensionali2ed with the same terms used in the

steady-state analysis with the addition of the tidal period T, 7 = t/T.

L.bh d0d ~~ d8d B$ 30 i 3 0
0,T a~ a~ aE. aZ a~ = q h Z 2~n

5.10

Using the same boundary conditions and solution technique discussed in

Chapter III, the unsteady model, including equation 5.l0 yields the

following expression for the two-dimensiona] salinity,

1

B  ,rl! = Jf F�n! dq + 0 � !{{F�n! dndn 5.11

where

f E,n! = exp  j � � dn! J  C � � � � ! � exp  j- � -- dr,!!d~3$ 1 d 3 f! d I 3 I, 1
aE C2 43' Br! BE, C2 dE C2

5.12

and
L bh

C
4 q T

The equation for the stream function is unchanged.

5.4 Two-Dimensional Ex erimental and Anal tical Results for Transient
Flume Stud

l23

As with the analysis of the steady-state flume tests discussed in

Chapter IV, the app]ication of the analytical model to this transient

flume s'tudy begins with the computation of the one-dimensional longitudinal

salinity distribution. In this case, to illustrate the predictive possi-

bi»ties of the coupled one-and two- dimensional models, the. Thatcher



and Harleman �972! numerical model is used to comnut.e this needed dis-

tribution. The values for salinity from t he real-time model are averaged

over each of the 25 transient tidal cyc1cs. This same technique is
gS

employed to f ind the change in mean saJ ini ty � � . Figure 5. 5 illustratesBt

the experimental and computed time.-averaged, one � dimensional salinity

distribution for cycles 1, 14 and 24. Fxcept at station 5, where flume

entrance effects are present, the agreement between the averaged numerical

results and the averaged experimental data is very good, a further

confirmation of the numerical model. As with the previous flume analysis,

the first and second spacial derivatives ot this mean sal.inity are

determined with the spline technique outlined in appendix 2.

The other necessary inputs to the analytical model include the flume

dimensions, intrusion lengths, and eddy coefficients D and K. These

latter terms were taken from the steady-state correlation shown in figures

4.15 and 4.16. Table 5.3 summarizes the input.s to the two-dimensiona1

model for cycles in which experimental data are availahle. Figures 5.6

and 5.7 illustrate the comparison between experiment.a1 and computed

velocities for cycles 1 and 25. The circled crosses indicate experimenta1

points which are probably inaccurate and should be discounted. In

general, the analytical results, using values for D taken from the steady-

state correlations, yield very acceptable results for this transient

test. Figure 5.8 shows the comparison of salinit.y profiles. Again,

using values of K from the steady-state correlations appears to give

quite good fits of the distributions of salinity.

As discussed in section 5.3, the analytical mode1 for the transierit
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interesting to examine the importance o! i c~ !»~! inn, thi s term in the

model, at least with regard to the sca',es '. »cd '" a J uhoratorv f]use.

e 5.4 lists the computed values of thr sa! i nit ies for cvcle 6 at

station 40 for model solutions with and wi the»t the unsteady term.

Table 5. 4

as
Effect of � Term in Salt Balance

at

VKS 42 Station 40 Cycle 6

as
S, ppt  with = ! as

S, p pt  - � neg lee ted!
atDepth, y/h

5.17 5.28

6.42 6. 51

9. 86 9. 92

14. 15 14. 74

20.20 20. 10

25. 52 25. 30

The ma difference of .22 ppt is not a significant quantity con-

dering the model assumptions and other departures from the natural
svstem, Th~ -"us, it would seem that oerhars the steadv-state salt »la"c'

equation uld be used to model this tran. ient sal initv rhenomen«

However, s.t sho o ld b oted that this flume
change in fresh"h- t d h rge in 25 cvcl es and

can have the same change in about 10 tida' y; thout a«"""'

analysis, it is the f ertss's erefore uncertain aa to
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f]ume connditions includes a � . � ter ' "- " -~- < ance equation,
t t is



can
be neglected for applications Pf this model tp re lo rea estuaries.

F 1 ume Cond i t i ons on Shoal in Ch aracteristics

'mpprt ant f eature of the two-dimensional modeling f the ing o t e time-

eloc j ty prof i les is the ident i f ication of the longitudinal

net bottom velocity changes directio~ and goes

zero val 'ue This point is commonly cal led the "nul 1-point"

been shown by Simmons �965!, and others, to be a zone of high

f sh pa 1 j ng in est uar i ne channe 1 s, as previous ly discussed in

11 Figure 5,9 il l ustrates the features of this null-point and

it is equivalent to the point where the net landward flo

of salt water ceases.

U d 1 3 2

U 3$ 24
= � � �  - 4q + 6r1 � 1! � 1 3.64

At the bottom, r1 = 1, a condition of zero velocity

equation which states that

38 C
l

3  24
ao

where is the non-dimensional one dimensional salini y git radient, and

131

Since the vertical structure of the net velocity field is strongly

dependent upon the magnitude of freshwater inflow, the null-point must

also exhibit a dependence on these discharges. Figure 5.1D shows how

the null-point, as determined f rom the analytical model, moves upstream

as the freshwater inflow is decreased over the 25 cycles of the transient

lume study . The null-point can be found analytically from the equation

for the horizontal velocity,
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0
C! =

D
1

The fact that U/I! is zero imp1 ies that the net density currentf rent is ]~~

equa1 and opposite to the freshwat ~ r veIo< i tv, since U contains b hains oth sf

these components in its definition.
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Fatuatv � An Analvtical lnvFt tta: stuarine Shoali~n

The shoaling problems of the savannah Estuary have been carefull

reviewe d by Qimmons �965! and Harleman and Ippen �969! . Both hydraulic

models an ave shown a rel

ing and a nu]]longitu ina

ln figure location map fo

ia te ly downs t re

"' 'f v"y»gh ho

ary ~ Iny compar'

n figure 6 I wrth a freshwater flow equal to 7 000 cfs

the null point also occurs between these two stations.

In their report, Har leman and Ippen pr esent the time-and depth-

salinity distributions from the model for fresh-averaged longitudinal

of larieman and Ippen, the discharge through the navigr ation channel zs

char e, i.e., 5250 cfsthe total freshw ter di ch

for the maximum flood
respectively. The

I Current Tables.the Coast and Geodetic Tid

the one-dimensional long-sp«ial derivatives of the one-

itud- d usin the spline program
ity distribution
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water flows of 7,000 cfs and 16,000 cfs, shown in figure 6.3  their

figure 13!. With these c~rves, and the correlation for eddy coefficients

P«sented in Chapter IV, it is possible to apply the analytical model

developed in Chapter III to this estuary and thus further investigate the

ouil point dependence on freshwater flow rates.

Table 6.1 summarizes the data input to the analyticaal model for both

t"e 7>000 cfs and 16,000 cfs freshwater flow rates. Foll goiiowin the arguments
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out 1.nt] ined in append i x

Eigure 6.4 illustrates the analytical results foror t e nul.l point

for' the two f reshwat e r f 1 ows The connected circles are the ce comnuted

Table 6.1

Savannah Estuary 6 In uts to Analytical Node1

h = 27 ft.
0

= 2,000 ft.
0

S = 30 ppt
o

u � 2 knots
0

q = 7 ppp cfs
f0 = 16,000 cfs

= Inp,ppp ft.
1Li = 85,000 ft.
/ u = ,p29

f o
-3 2

D = 12.8 x lp ft /sec
'f/U = .066

0

x 10 ft /sec
-3 2

139

values and the crosses are the hydraulic model data, as reported by

Sarleman and Ippen. The fairly close agreement between computed and

experimental values indi ca'tes that the Savannah estuary prototype sca] e

and conditions do not seriously violate the assumptions of the analytica1.

model ~

In figure 6.4 it is seen that the null point shifts downstream

1,QQQ feet when the freshwater discharge is increased to 16,0QQ cfs.

qualitative results of this nature illustrate the usefulness of the

analytical model in the analysis of the many factors which determine the

circulation patterns in estuaries. @hen used in conjunction with a

numerical model, as discussed in Chapter V, or a hydraulic model, as in

the present illustration, this analytical model should prove to be a

valuable aid to engineering analysis.
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S~arv and Conclusions

Vlf ~Ob'ectives
The importance of estuaries in the complex schemes of the natural

environment demands that man Rain a more fundamental understanding of

The ecological stress threatening es-of these water hodies.ynam c

of increasing coastal development can only be an-

knowledge derived f rom intensive research and analysis.

l ] part of th i s needed understanding can be realized from t he de-

of mathemat j cal models of estuarine circulation and dynamics.

The development of a mathematical model requires the understanding of

the physics of the natural system being modeled. Thus, the record of

these model developments is in fact the history of man's increasing

knowledge of these coastal systems.

The present study seeks a method of predicting the patterns of cir-

culation and salinity distribution for the somewhat restrictive condition

resulting from time-averaging these processes over a tidal period.

iongitudinal and vertical variations only, are considered, and thus

lateral spacial averaging is also implied. Although these limiting con-

ditions exclude the model.ing of the tidal varying properties characteristic

o«stuaries, several important problems can be examined wed with such a model.

ng example of this latter set of model. app ilications is the

shoal ing and of turbidity in esstuarine channels as

eshwater inflow patterns.t"e modification of the natural fres a

Th
nt and hysical under-n mathematical model development a p

as made serious engineering"gh physical model.s and field wo k ha ma

l41



analysis possible which can be applied successfully to this problem.

7 2 S us+la ~p

The model of the time-averaged longitudinal and vertical distributions

of velocity and salinity developed in this study employs an analytical

solution to the four basic equations describing these parameters.

l. Equations of motion. These equations state the conservation of

longitudinal and vertical momentum. The assumption is made that, for

the mean force balance, averaged over a tidal period, the only important

terms are the following: the pressure gradient and buoyancy for the

vertical equation, and the balance between the pressure gradient and the

vertical flux of momentum for the longitudinal equation of motion.

2. Equation of water conservation. The continuity equation for an

Incompressible fluid is used in the model.

3 ~ Equation of salt conservation. The two-dimensional equation af

the conservation of dissolved salt is included in the model in which the

horizontal and vertical convectio~ is balanced by the vertical eddy

diffusion only. Thus, the transport by horizontal eddying has been neg-
lected.

4. Equation of state. The relationship between density and salinity

is approximated by a linear function which neglects temperature effects-

Tn seeking an anaIytical solution to the above set of equations,

several additional assumptions are introduced . The longitudinal salinity

gradient has been shown by field and laboratory analysis to be nearly

i~dependent of depth. This observation is included in the model by

replacing the actual longitudinal salinity gradient �  x,y! with theas
ax
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as
gradient of the depth averaged salinity -  x! . The second import t

assumption is that the mean vertical eddy coefficients fn s o momentum D  x,y!

and salt K  x,v! may he replaced with effective coefficients independent

of depth, D x! and K x!.

With the above assumptions and a set of generalla y accepte oundarytdb d

conditions, an analytical solution is found using sim 1 th d fg s p e met ods of nu-

merical intergration. This solution is studied with d t fata rom several

flume tests and three field studies. A result of this analysis is that

accurate profiles of velocity and salinity can be obtained h th dda ne w en t e eddy

coefficients D x! and K x! are assumed as constants D d K, i ds, an, n ependent

of both x and y. These. mod i f ied coef f ic ients have been correlated with

the ratio of freshwater velocity and maximum flood tide velocity at the

entrance of the estuary, incorporating two dimensionless terms which may

be derived from the governing equations.

The model, including the correlations for the eddy coefficients, has

been successfully applied to a transient flume study wherein the freshwater

inf low varied over a period of 25 tidal cycles. In this regard, the model

was coupled with the results from a one-dimensional non-time-averaged

numerical model of salinity intrusion. Used in this manner, the two models

represent an important combined approach to the analysis of estuarine

systems.

Finally, the two-dimensional analytical model has correctly described

the relationship known to exist between the zones of shoaling and levels

of freshwater inflow for the Savannah estuary.
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7-3 Future Work

The present model is neither the first at. tempt, nor should it be the.

final answer to the mathematical formulation of the physics governing

estuarine circulation and diffusion. Immediate improvements and refine-

ments might best be directed towards a more sophisticated approach to

the determination of the eddy coefficients, rather than the essentially

empirical technique of the present study, A significant improvement in

the details of the vertical structure of velocity and saI inity is direct.1y

dependent on the more accurage representation of these coefficients.

Ultimately, a real-time two-dimensional, or even three-dimensional

model, may be developed, using numerical methods with large, high speed

computers. For the proper evaluation of these models of the future, as

well as the present analytical schemes, much nore laboratory, and es-

pecially, field data are needed. The present oceanographical data bank+

are often collections of observations which do not lend themselves to

direct comparison to mathematical models- A greater feedback between

model builder and field observer must be iniated to promote rapid progress

in this study of estuaries.
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Appendix 1

The Com uter Pro ram for Two-Dimensional Analytical f:,stuart Model

second derivatives. These parameters are usually determined

from the SPI.INK program described in appendix 2.

the eddy coefficients, normally taken from the correlations

presented in Chapter IV.

the freshwater velocity, 0 /hh  constant for constant b and h!

D,K

Hl the depth of msl.

S$ the ocean salinity.

LI the salinity intrusion length.

For each longitudinal station, the model. begins with the computation

of the dimensionless groups Cl and C2. Then, at each discrete depth a

horizontal and vertical velocity is found. With these parameters known,

the numerical intergration of the salinity function is carried out, a corn-

putation requiring four nested integrals. Finally, the salinity is com-

puted and printed with the horizonta1 and vertical velocities.

143

The analytical solutions for velocity and sal in i ty development in

Chapter III include several complex integrals which are evaluated by nu-

merical intergration techniques. From a computational point of view, the

model is very simple and requires only a limited amount of time and storage-

Both an IBM 370/155 using Fortran IV,  : level, Mod 3 and a HP 21l48

using HP Basic have been employed in this study. To illustrate the rela-

tive simplicity of the computational scheme, the HP Basic program is pre-

sented in this appendix.

Program inputs:

S,N,N the normalized one-dimensional salinity and its first and
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628
658
652
654

658
668
678
672
674
676
678

688
682
698
691
692
693

694
695

788
782
784
786
788
718
712

714
716
718
7~8
722

738
758
752
768
762
768
778
788
782
784
786
798

In ltP basic, the program is as follows:

DI M S[5 ],N [5 ], N[ 5 ],K [5],D[ 5],A[ 11],B [11],X[11]
NAT READ S

NAT BEAD
MAT READ N

MA T BEAD j 

MAT READ D
BEAD U 1,H 1, SH,L 1
FOB J= 1 TO 5

LET C2=K [ J ] wL1/ U IwHl t2!
LET C1=1.8HDHHE-H3w. 75~S8432.2wX 1 t3/ L 1+P [ J]+U 1 !
FOR I = 1 TO 1 1
LET Y:.Iw I-I!
LET A[ I ] = M[ J] + I+C[+N[ J ]/24+�wyt3 6*yt2+1! ! ! /C2
LET B[ I ] = -Cl*N[ J ]/24+ Y t4-2~yt3+y! ! /C2
NEXT

PBI NT
PRINT
PRINT "Y/K"," U/UF"," V/UF"," S/S8"
PRINT "
PRINT
LET T2= T4=T6= T8=H3=8
FOR I=2 TO 1 1
LET Tl=T2
LET T2 � T. +5 ~ 8888HE-8':  B [ I ]+B[ I- I] !
LET T3= T4
LET T4= T4+5-8888HE-82+  A [ I ]+EXP -T2!+A [ I-1]+EXP  -T 1 ! !
LET T5=T6
1.ET T6=T6+5.88888E-824 EXP T2!WT4+EXP T1!+T3!
LET K[ I- 1]=T5
LET T7=T8

LET T8= T 8+5 ~ OHHHHE- 82+  T 6+T5 !
NEXT
LET H[ 1 1 ]=T6
FOR I= 1 TO 1 l
LET y=.lw I-I!
LET X4=H[ I]+S[J]-T8
LET X3=H3+X4
LET U=A[ I ]W2/N[ J]
LET V=B[ I ]~C2~H 1/Ll
PRI NT Y ~U,V,H4
NEXT I
LET H3=H3/l 1

PRINT H3
NEXT J



DATA . Sl, . 66, ~ 37 f . 13,2 ~ HHHHHE- 82
DATA � ~ 51,- 97,-1 ~ 17 f 69 f
DATA 1 ~ 4f 2~9 ~ l ~ Zf2 ~ 6f1 ~ 3
DATA 2 38888E-84f2 ~ 38888E-H4,2 ~ 38888K-84
DATA 2 ~ 38888E-84,2.38888E- 84
DATA l.48UHHE-84f 1 ~ 48888E-84f 1,4UHHHE-84
DA TA 1.488 HRE-H4 f 1 . 488HHE- H4
DATA 2 ~ HHHHHE-HZ f ~ 5 f 29 ~ 7f 1 S2
END

A sample of the output from this program is given be low. All values

are dimeasionless, and y/h = 0 is at. the surface.

S/SH0/UF V/UF

8
~ l
~ 2

~ 4

.5
~ 6
~ 7

f8
~ 9
1

~ 818679

150

828
822.
824
826
827
828
829
838
988

4~ 73864
4 ~ 5 2927
3. 961
3. 1 2355
2.18664

�.186637
-1.12355
-1 961
-2 ~ 5 "9c 7
- 2. 73864

8
-2.76591E-H3
-5 ~ 23296E- 83
-7. 16431E-83
� 8 ~ 3 9879E- 83

-8 ~ R 1 889F-83
-8 ' 39879E-83
-7. 16 43 1 E- H3
-5 . 23 296E- 83
-2 ~ 76591E-83

8

~ 774588
~ 775924
~ 788885
~ 786747
~ 795527
. 885925
.817347
.S29l36
.848626
.851212
,868432



Appendix 2

~The Com uter Pr~o ram for S line inter olation of One-Dimen
Gradients

The first and second spacial derivatives of the one-dimensional

longitudinal salinity distribution, which are inputs to the analytical

model described in appendix 1, are computed with a spline interpolation

routine. The spline program, written here in HP Basic, was adapted from

the N.I.T. Information Processing Center Program, described in their

bulletin AP-72. As stated in AP-72:

The spline fit curve is a mathematical expression for
the shape taken by an idealized spline  a thin wood or
metal strip! passing through the given points........
The spline curve is a niecewise cubic with continuous
first and second derivatives. Thus, it can give good
approximations to the first and second derivatives of
the function in addition to the function values,

Program inputs

the 1-D salinities, normalized by the ocean salinity

the salinity intrusion length, ft .

the distance between values of salinity, y  T is constant in

this case, but can also be a variable..!

The distance between points where interpolated salinities are

to be found.

the number of points where salinities are given

the number of points where interpolation is carried out.

L3

N
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2 I MPUT N,['],S, T ~L l
DID] Xt 21 ],7[2[ ],A[21],U[ c 1 ],8[21] D[ 21 ]

4 LET Z[1 ]=X[ 1 ]=8
5 FOR I=2 TO

6 LET ZtI ]=Z[ I-1]+S/Ll
7 NEXT I

8 DIN Y[5 ]
9 PRINT "X" i "NEA N SAL ~ ","DS/DX","[i 2S/['K2"
14 PRI NT

11 FOPi I=2 TO iN
12 Lr T X[ I ] = X[ I" 1 ]+T/Ll
13 NEXT
14 PRINT
15 [V T READ Y
16 LET S 1= T/Ll
17 LET NV=N- 1
18 LET M[ [ ~ 1]=- 5
19 LET !l[2, []=8
28 FOR I = 2 TO N9

LET F= Y[ I+1]-Y[ I ]! /S[-  Y[ I ]-Vt I-1] >/S
23 LET S4=S [~. [66667
24 LET U2= S 1+Sl� ' 333333-S4+M[ 1,I-[]
25 LET 9[ 1, I ]=  S te [66667! /1<2
26 LET 'J[ 2, I ] =  F-S44!i[[2,1-[] ! /W2
27 NEXT I
36 LET Ef N] = .5+@[2,N8] !/�+ ~ 54'l/[ 1, N8] !
48 FOR 1=2 TO N
45 LET K= N+1- I
58 1 ET E[K ]=Ut?.,K]-U[],K ]4E[K+1]
55 NEXT I
68 FOR I= 1 TO [']
65 LET Zl=Zt I ]
70 LET K=2
75 IF  Zl-Xf 1 ]!<8 THEN 88
76 IF  Zl-X[1 ]]=8 THEN 388
77 IF  Z 1-X[ 1 ] !~8 THEN 85
RU IF 71~ }.[+X[ 1]-.[*X[?]! THEN 488

GOTO 308
p5 LET K=N
87 IF  Zl-X[N] >~8 THEN 96
SB IF  Zl-Xt N]!=8 THEN 308
98 I F  Zl-Xt N]! ~8 THEN 93
93 IF ZI> [ 1+X[ N]- ~ lwX[ N-1] ! THEN 488
94 GOTO 388

,E[ 2] ],!Pt 2,, 1 ]

152



96 LET N22

l53

1 8 !
110

111
115
1 8
121

122
125

126
138
135
388

381
385

318

315

328
325
338

335
340
345
358
351
355
368
365
371
373
375
376
377
488

418
452
508

L} T i]3= N
R E['I
LET K=   I3+I''I2! /2
IF  PI3!  I]2-.1! ! A ND  N3  [12+. 1! ! THEN 388
IF  Z 1-X[K ] !~U THEN 125
IF  Z 1-X[K ] !:0 TH N 380
I F  Z 1-X[K 'I ! >8 THEN 138
LET []
GOTO 118
LET 82=K+1
GOTO 118
REri
LET X2=X[K ]-Z 1
LET X3=X2r2
LET Z3=Z}-X[K- 1]
LET Z4= Z3 t2
LET S2=S}42
LET S3=S}+.166667
LET E}=E[K ]
LET E2=E[ K- 1]
LET Y1=Y[K]/Sl
LET Y2=Y[ K- 1 ]/S 1LET A [ I ]=  E2~ X3+X2+El+Z4+Z3!+e 166667/S 1
LET A [ ! ] = A[ I ]+  Y 1-E }4S3! wZ3+< Y2-E WS3! + X2
1.ET B[ I ]= �}+Z4-E~~X3!/S2+Y1-Y2- El-E2! wS3
LET C[ I ] =  E2~X2+El+Z3! /S 1
NEXT I
FOR I = 1 TO f'}
LET Z[ I]=Z[ I ]+Lt
PRINT Z [ I ],Al I ],H[ I ] ~G[ I ]
NEXT I
GOTO 588
PRINT " OUT OF RANGE, X=";Zl
GOTO 388DA TA ~ 9 1, . 77, ~ 5 32, ~ 2 ~ 4. 8888 8E- 82, 8
END



An example of the spline program output is given he3ow. The values

of x are in feet, and the other terms are dimensionless,

75 ~5 ~48,48, 168
X MEA N SAL ~ DS/DX D 2S t'D X2

READY

154

8

48
88
l28
l68

,91
~ 7 7
~ 532
~ 2
4 ~ 88888E" 82

Ill
-. 78875
-1 26
� 1.891 25

278999

�. 714
� I 428
-2 ~ 982

W. 332
2 ~ 166



Appendix 3

paroles of Computed and Experimental Velocity and . alinitn'tv Distributions

The following tables present the comparison of computeo uted and ex eri-p

mental velocity and salinity distributions for the
e ts and field

data evaluated kn Chapter JV, The units of the eddy coefficiicients D and K

are as stated in the ta'ble; all other terms are dimensionless-
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